Heterogeneity of Mitral Leaflet Matrix Composition and Turnover Correlates with Regional Leaflet Strain
详细信息    查看全文
  • 作者:Elizabeth H. Stephens ; Patrick S. Connell…
  • 关键词:Mitral valve ; Extracellular matrix ; Matrix metalloproteases ; Collagen ; Leaflet strain
  • 刊名:Cardiovascular Engineering and Technology
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:6
  • 期:2
  • 页码:141-150
  • 全文大小:982 KB
  • 参考文献:1.Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655鈥?665, 2006.View Article
    2.Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296:H756鈥揌764, 2009.View Article
    3.Carew, E. O., and I. Vesely. A new method of estimating gauge length for porcine aortic valve test specimens. J. Biomech. 36:1039鈥?042, 2003.View Article
    4.Chaput, M., M. D. Handschumacher, F. Tournoux, L. Hua, J. L. Guerrero, G. J. Vlahakes, et al. Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation. 118:845鈥?52, 2008.View Article
    5.Chiechi, M. A., W. M. Lees, and R. Thompson. Functional anatomy of the normal mitral valve. J. Thorac. Surg. 32:378鈥?98, 1956.
    6.Cochran, R. P., K. S. Kunzelman, C. J. Chuong, M. S. Sacks, and R. C. Eberhart. Nondestructive analysis of mitral valve collagen fiber orientation. ASAIO Trans. 37:M447鈥揗448, 1991.
    7.Gheewala, N., K. A. Schwarz, and K. J. Grande-Allen. Organ culture of porcine mitral valves as a novel experimental paradigm. Cardiovasc. Eng. Technol. 4:139鈥?50, 2013.View Article
    8.Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34:1509鈥?518, 2006.View Article
    9.Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34:315鈥?25, 2006.View Article
    10.Grigioni, F., M. Enriquez-Sarano, K. J. Zehr, K. R. Bailey, and A. J. Tajik. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 103:1759鈥?764, 2001.View Article
    11.Gupta, V., J. A. Werdenberg, J. S. Mendez, and K. Jane Grande-Allen. Influence of strain on proteoglycan synthesis by valvular interstitial cells in three-dimensional culture. Acta Biomater. 4:88鈥?6, 2008.View Article
    12.Karlsson, M. O., J. R. Glasson, A. F. Bolger, G. T. Daughters, M. Komeda, L. E. Foppiano, et al. Mitral valve opening in the ovine heart. Am. J. Physiol. 274:H552鈥揌563, 1998.
    13.Krishnamurthy, V. K., F. Guilak, D. A. Narmoneva, and R. B. Hinton. Regional structure-function relationships in mouse aortic valve tissue. J. Biomech. 44:77鈥?3, 2011.View Article
    14.Ku, C.-H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71:548鈥?56, 2006.View Article
    15.Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71鈥?8, 1992.View Article
    16.Kunzelman, K. S., R. P. Cochran, S. S. Murphree, W. S. Ring, E. D. Verrier, and R. C. Eberhart. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J. Heart Valve Dis. 2:236鈥?44, 1993.
    17.Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129:78鈥?7, 2007.View Article
    18.Merryman, W. D., H. Y. Shadow Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39:88鈥?6, 2006.View Article
    19.Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, et al. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Hear. Circ. Physiol. 290:H224鈥揌231, 2006.View Article
    20.Messier, R. H., B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J. Surg. Res. 57:1鈥?1, 1994.View Article
    21.Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 104:2525鈥?532, 2001.View Article
    22.Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, et al. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369鈥?377, 2006; (Elsevier).View Article
    23.Stephens, E. H., N. de Jonge, M. P. McNeill, C. A. Durst, and K. J. Grande-Allen. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng. Part A. 16:867鈥?78, 2010.View Article
    24.Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation. 118:S243鈥揝249, 2008.View Article
    25.Timek, T. A., P. Dagum, D. T. Lai, D. Liang, G. T. Daughters, F. Tibayan, et al. Tachycardia-induced cardiomyopathy in the ovine heart: mitral annular dynamic three-dimensional geometry. J. Thorac. Cardiovasc. Surg. 125:315鈥?24, 2003.View Article
    26.Tsakiris, A. G., D. A. Gordon, Y. Mathieu, and L. Irving. Motion of both mitral valve leaflets: a cineroentgenographic study in intact dogs. J. Appl. Physiol. 39:359鈥?66, 1975.
    27.Tsakiris, A. G., G. Von Bernuth, G. C. Rastelli, M. J. Bourgeois, J. L. Titus, and E. H. Wood. Size and motion of the mitral valve annulus in anesthetized intact dogs. J. Appl. Physiol. 30:611鈥?18, 1971.
    28.Walmsley, R. Anatomy of human mitral valve in adult cadaver and comparative anatomy of the valve. Br Hear. J. 40:351鈥?66, 1978.View Article
    29.Wang, J., H. Chen, A. Seth, and C. A. McCulloch. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 285:H1871鈥揌1881, 2003.View Article
    30.Zhao, R., K. L. Sider, and C. A. Simmons. Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater 7:1220鈥?227, 2011; (Acta Materialia Inc.).View Article
  • 作者单位:Elizabeth H. Stephens (1) (2)
    Patrick S. Connell (2)
    Monica M. Fahrenholtz (2)
    Tomasz A. Timek (3)
    George T. Daughters (4)
    Joyce J. Kuo (2)
    Aaron M. Patton (2)
    Neil B. Ingels (4) (5)
    D. Craig Miller (4) (5)
    K. Jane Grande-Allen (2) (6)

    1. Department of Cardiothoracic Surgery, Columbia University School of Medicine, New York, NY, USA
    2. Department of Bioengineering, Rice University, Houston, TX, USA
    3. Department of Cardiothoracic Surgery, Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI, USA
    4. Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
    5. Department of Cardiovascular Physiology and Biophysics, Research Institute, Palo Alto Medical Foundation, Palo Alto, CA, USA
    6. Bioengineering, Rice University, MS142, PO Box 1892, Houston, TX, 77251-1892, USA
  • 刊物主题:Biomedical Engineering; Cardiology; Biomedicine general;
  • 出版者:Springer US
  • ISSN:1869-4098
文摘
To determine how extracellular matrix and contractile valvular cells contribute to the heterogeneous motion and strain across the mitral valve (MV) during the cardiac cycle, regional MV material properties, matrix composition, matrix turnover, and cell phenotype were related to regional leaflet strain. Radiopaque markers were implanted into 14 sheep to delineate the septal (SEPT), lateral (LAT), and anterior and posterior commissural leaflets (ANT-C, POST-C). Videofluoroscopy imaging was used to calculate radial and circumferential strains. Mechanical properties were assessed using uniaxial tensile testing and micropipette aspiration. Matrix composition and cell phenotypes were immunohistochemically evaluated within each leaflet region [basal leaflet (BL), mid-leaflet (ML), and free edge]. SEPT-BL segments were stiffer and stronger than other valve tissues, while LAT segments demonstrated more extensibility and strain. Collagens I and III in SEPT were greater than in LAT, although LAT showed greater collagen turnover [matrix metalloprotease (MMP)-13, lysyl oxidase] and cell activation [smooth muscle alpha-actin (SMaA), and non-muscle myosin (NMM)]. MMP13, NMM, and SMaA were strongly correlated with each other, as well as with radial and circumferential strains in both SEPT and LAT. SMaA and MMP13 in POST-C ML was greater than ANT-C, corresponding to greater radial strains in POST-C. This work directly relates leaflet strain, material properties, and matrix turnover, and suggests a role for myofibroblasts in the heterogeneity of leaflet composition and strain. New approaches to MV repair techniques and ring design should preserve this normal coupling between leaflet composition and motion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700