Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles
详细信息    查看全文
  • 作者:Rajwali Khan ; Zulfiqar ; Yasir Zaman
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:27
  • 期:4
  • 页码:4003-4010
  • 全文大小:1,554 KB
  • 参考文献:1.T. Nie, J. Tang, K.L. Wang, Quest for high-Curie temperature Mn x Ge1−x diluted magnetic semiconductors for room-temperature spintronics applications. J. Cryst. Growth 425, 279–282 (2015)CrossRef
    2.G.V. Lashkarev, V.V. Slynko, Z.D. Kovalyuk, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, R. Szymczak, W. Dobrowolski, Anomalies of magnetic properties of layered crystals InSe containing Mn. Mater. Sci. Eng. C 27, 1052–1055 (2007)CrossRef
    3.H. Jiang, X.F. Liu, Z.Y. Zou, Z.B. Wu, B. He, R.H. Yu, The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci. 258, 236–241 (2011)CrossRef
    4.H. Liu, X. Cheng, H. Liu, J. Yang, Y. Liu, X. Liu, M. Gao, M. Wei, X. Zhang, Y. Jiang, Structural optical and magnetic properties of Cu and V co-doped ZnO nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 47, 5–27 (2013)
    5.B. Choudhury, A. Choudhury, Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 13, 1025–1031 (2013)CrossRef
    6.S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science. 294, 1488–1495 (1998)CrossRef
    7.K.S. Burch, D.D. Awschalom, D.N. Basov, Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008)CrossRef
    8.J. Hays, A. Punnoose, M. Engelhard, J. Peloquin, K. Reddy, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72, 054402 (2005)CrossRef
    9.K. Nomura, C.A. Barrero, J. Sakuma, M. Takeda, Room-temperature ferromagnetism of sol–gel-synthesized Sn1−xFex57O2−δ powders. Phys. Rev. B 75, 184411 (2007)CrossRef
    10.V. Bilovol, A.M.M. Navarro, C.E.R. Torres, F.H. Sanchez, A.F. Cabrera, Magnetic and structural study of Fe doped tin dioxide. Phys. B. 404, 2834–2837 (2009)CrossRef
    11.L. Fang, X. Zu, C. Liu, Z. Li, G. Peleckis, S. Zhu, H. Liu, L. Wang, Microstructure and magnetic properties in Sn1−x Fe x O2 (x = 0.01, 0.05, 0.10) nanoparticles synthesized by hydrothermal method. J. Alloys Compd. 491, 679–699 (2010)CrossRef
    12.S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Thurber, A. Punnoose, A variable temperature Fe3+ electron paramagnetic resonance study of Sn1−xFexO2 (0.00 ≤ x ≤ 0.05). J. Appl. Phys. 101, 09H120 (2007)CrossRef
    13.C. Van Komen, A. Punnoose, M.S. Seehra, Transition from n-type to p-type destroys ferromagnetism in semiconducting Sn1−x Co x O2 and Sn1− x Cr x O2 nanoparticles. Solid States Commun. 149, 2257–2259 (2009)CrossRef
    14.J.M. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)CrossRef
    15.Punnoose, J. Hays, Possible metamagnetic origin of ferromagnetism in transition-metal-doped SnO2. J. Appl. Phys. 97, 10D321 (2005)CrossRef
    16.W. Wang, Z. Wang, Y. Hong, J. Tang, M. Yu, Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys. 99, 08M115 (2006)
    17.S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO(2-delta). Phys. Rev. Lett. 91, 077205 (2003)CrossRef
    18.J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)CrossRef
    19.J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)CrossRef
    20.C.W. Zhang, P. Wang, F. Li, First-principles study on surface magnetism in Co-doped (110) SnO2 thin film. Solid State Sci. 13, 1608–1611 (2011)CrossRef
    21.F. Bouamra, A. Boumeddiene, M. Rerat, H. Belkhir, First principles calculations of magnetic properties of Rh-dope SnO2(1 1 0) surfaces. Appl. Surf. Sci. 269, 41–44 (2013)CrossRef
    22.G. Rahman, V.M. García-Suárez, Surface-induced magnetism in C-doped SnO2. Appl. Phys. Lett. 96, 052508 (2010)CrossRef
    23.M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)CrossRef
    24.R. Adnan, N. Razana, I. Rahman, M. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method as a catalyst for the hydrogenation of styrene. J. Chin. Chem. Soc. 57, 222–229 (2010)CrossRef
    25.P. Mohanapriya, R. Pradeepkumar, N. Jaya, T. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)CrossRef
    26.D. Toloman, A. Popa, O. Raita, M. Stan, R. Suciu, M.O. Miclaus, A.R. Biris, Luminescent properties of vanadium-doped SnO2 nanoparticles. Opt. Mater. 37, 223–228 (2014)CrossRef
    27.F.A. Mir, K.M. Batoo, I. Chatterjee, G.M. Bhat, Preparation and ac electrical characterizations of Cd doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 25, 1564–1570 (2014)CrossRef
    28.B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 26(7), 5393–5399 (2015)CrossRef
    29.X. Su, F. Luo, Y. Jia, J. Wang, J. Xu, X. He, C. Fu, S. Liu, reparation and electromagnetic property of Al-doped SnO2 powders by co-precipitation method in the GHz range. J. Mater. Sci. Mater. Electron. 25, 5101–5106 (2014)CrossRef
    30.X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy Compd. 627, 367–373 (2015)CrossRef
    31.X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao, H. Zhu, Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J. Mater. Sci. Mater. Electron. 26, 3474–3478 (2015)CrossRef
    32.X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)CrossRef
    33.J. Hays, A. Punnoose, M. Engelhard, J. Peloquin, K. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)CrossRef
    34.H. Zhanga, D. Wangb, V. Hua, X. Kangb, H. Liub, Synthesis and magnetic properties of Sn1−xCoxO2 nanostructures and their application in gas sensing. Sens. Actuators B 184, 288–294 (2013)CrossRef
    35.X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods preparedby solvothermal method. J. Phys. Chem. C 114, 4790 (2010)CrossRef
    36.K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol–gel method. J. Appl. Phys. 110, 083901 (2011)CrossRef
    37.R. Khan, M.H. Fang, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phy. B. 24, 127803 (2015)CrossRef
  • 作者单位:Rajwali Khan (1)
    Zulfiqar (2) (3)
    Yasir Zaman (4)

    1. Department of Physics, Zhejiang University, Hangzhou, 310027, China
    2. Departments of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
    3. Department of Physics, Abdul Wali Khan University, Mardan, KPK, 25000, Pakistan
    4. Departments of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
After our first study of dielectric and magnetic properties in the (Zn, Co) co-doped SnO2 nanoparticles annealed at 600 °C, we present a comprehensive investigation of the structural, dielectric, transport and magnetic properties of chemically prepared pure and (Zn, Co) co-doped SnO2 nanoparticles annealed at 800 °C, using X-ray diffraction, transmission electron microscopy (TEM), L.C.R meter and magnetic properties measurement system (MPMS related SQUID). In all (Zn, Co) co-doped SnO2 samples prepared at 800 °C with Co content x ≤ 0.05, the SnO2 lattice contracts, dielectric constant and dielectric loss decreases whereas the electrical conductivity increases more than that of the 600 °C annealed samples. Room temperature ferromagnetic behavior observed in (Zn, Co) co-doped SnO2 samples. Increasing the Co content x to 0.03 leads to an increasing the ferromagnetic behavior, afterward the ferromagnetic behavior is observed to be decreases. A comparative study shows that (Zn, Co) co-doped SnO2 nanoparticles annealed at 800 °C have an excellent dielectric, magnetic properties and high electrical conductivity than that of the 600 °C annealed data, thus, they can be used as high frequency devices, ultrahigh dielectric materials and spintronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700