Intact IFN-γR1 Expression and Function Distinguishes Langerhans Cell Histiocytosis From Mendelian Susceptibility to Mycobacterial Disease
详细信息    查看全文
  • 作者:Willemijn T. Quispel (1)
    Janine A. Stegehuis-Kamp (1)
    Susy J. Santos (1)
    Annelies van Wengen (2)
    Edward Dompeling (3)
    R. Maarten Egeler (4) (5)
    Esther van de Vosse (2)
    Astrid G. S. van Halteren (1) (6)
  • 关键词:Langerhans cell histiocytosis ; mendelian susceptibility to mycobacterial disease ; diagnostic approaches ; interferon ; gamma ; interferon ; gamma receptor ; 1 ; autosomal dominant IFN ; γR1 deficiency
  • 刊名:Journal of Clinical Immunology
  • 出版年:2014
  • 出版时间:January 2014
  • 年:2014
  • 卷:34
  • 期:1
  • 页码:84-93
  • 全文大小:395 KB
  • 参考文献:1. Haupt R, Minkov M, Astigarraga I, Schafer E, Nanduri V, Jubran R, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. 2012;60:175-4. CrossRef
    2. Edgar JD, Smyth AE, Pritchard J, Lammas D, Jouanguy E, Hague R, et al. Interferon-gamma receptor deficiency mimicking Langerhans-cell histiocytosis. J Pediatr. 2001;139:600-. CrossRef
    3. Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernandez-Perez L, Chapgier A, et al. Partial recessive IFN-gammaR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet. 2011;20:1509-3. CrossRef
    4. Chantrain CF, Bruwier A, Brichard B, Largent V, Chapgier A, Feinberg J, et al. Successful hematopoietic stem cell transplantation in a child with active disseminated Mycobacterium fortuitum infection and interferon-gamma receptor 1 deficiency. Bone Marrow Transplant. 2006;38:75-. CrossRef
    5. Remiszewski P, Roszkowska-Sliz B, Winek J, Chapgier A, Feinberg J, Langfort R, et al. Disseminated Mycobacterium avium infection in a 20-year-old female with partial recessive IFNgammaR1 deficiency. Respiration. 2006;73:375-. CrossRef
    6. van de Vosse E, Hoeve MA, Ottenhoff TH. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis. 2004;4:739-9. CrossRef
    7. Lammas DA, de Heer E, Edgar JD, Novelli V, Ben-Smith A, Baretto R, et al. Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathway. Int J Exp Pathol. 2002;83:1-0. CrossRef
    8. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondaneche MC, Dupuis S, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet. 1999;21:370-. CrossRef
    9. Arend SM, Janssen R, Gosen JJ, Waanders H, de Boer T, Ottenhoff TH, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-gamma receptor. Neth J Med. 2001;59:140-1. CrossRef
    10. Auld B, Urquhart D, Walsh M, Nourse C, Harris MA. Blurring the lines in interferon γ receptor deficiency: an infant with near-fatal airway disease. Pediatrics 2011; eds.
    11. Dorman SE, Holland SM. Interferon-γ and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 2000;11:321-3. CrossRef
    12. Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, et al. Clinical features of dominant and recessive IFNγ receptor 1 deficiencies. Lancet. 2004;364:2113-1. CrossRef
    13. Glosli H, Stray-Pedersen A, Brun AC, Holtmon LW, Tonjum T, Chapgier A, et al. Infections due to various atypical mycobacteria in a Norwegian multiplex family with dominant interferon-gamma receptor deficiency. Clin Infect Dis. 2008;46:e23-. CrossRef
    14. Han JY, Rosenzweig SD, Church JA, Holland SM, Ross LA. Variable presentation of disseminated nontuberculous mycobacterial infections in a family with an interferon-γ receptor mutation. Clin Infect Dis. 2004;39:868-0. CrossRef
    15. Lee WI, Huang JL, Lin TY, Hsueh C, Wong A, Hsieh MY, et al. Chinese patients with defective IL-12/23-Interferon-γ circuit in Taiwan: partial dominant Interferon-γ receptor 1 mutation presenting as cutaneous granuloma and IL-12 receptor β1 mutation as Pneumatocele. J Clin Immunol. 2009;29:238-5. CrossRef
    16. Muszlak M, Chapgier A. Barry Harivelo R, Castella C, Cremades F, Goulois E, et al. Multifocal infection due to / Mycobacterium intracellulare: first case of interferon gamma receptor partial dominant deficiency in tropical French territory. Arch Pediatr. 2007;14:270-.
    17. Obinata K, Lee T, Niizuma T, Kinoshita K, Shimizu T, Hoshina T, et al. Two cases of partial dominant interferon-gamma receptor 1 deficiency that presented with different clinical courses of bacille Calmette-Guerin multiple osteomyelitis. J Infect Chemother 2012.
    18. Okada S, Ishikawa N, Shirao K, Kawaguchi H, Tsumura M, Ohno Y, et al. The novel IFNGR1 mutation 774del4 produces a truncated form of interferon-γ receptor 1 and has a dominant-negative effect on interferon-γ signal transduction. J Med Genet. 2007;44:485-1. CrossRef
    19. Sasaki Y, Nomura A, Kusuhara K, Takada H, Ahmed S, Obinata K, et al. Genetic basis of patients with Bacille Calmette-Guerin osteomyelitis in Japan: identification of dominant partial interferon-γ receptor 1 deficiency as a predominant type. J Infect Dis. 2002;185:706-. CrossRef
    20. Storgaard M, Varming K, Herlin T, Obel N. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections. Scand J Immunol. 2006;64:137-. CrossRef
    21. Villella A, Picard C, Jouanguy E, Dupuis S, Popko S, Abughali N, et al. Recurrent / Mycobacterium avium osteomyelitis associated with a novel dominant interferon gamma receptor mutation. Pediatrics. 2001;107:E47. CrossRef
    22. Vinh DC, Masannat F, Dzioba RB, Galgiani JN, Holland SM. Refractory disseminated Coccidioidomycosis and Mycobacteriosis in Interferon?οreceptor 1 deficiency. Clin Infect Dis. 2009;49:e62-. CrossRef
    23. Waibel KH, Regis DH, Uzel G, Rosenzweig SD, Holland SM. Fever and leg pain in a 42-month-old. Ann Allergy Asthma Immunol. 2002;89:239-3. CrossRef
    24. Minkov M. Multisystem Langerhans cell histiocytosis in children: current treatment and future directions. Paediatr Drugs. 2011;13:75-6. CrossRef
    25. van de Wetering D, van Wengen A, Savage ND, van de Vosse E, van Dissel JT. IFN-alpha cannot substitute lack of IFN-gamma responsiveness in cells of an IFN-gammaR1 deficient patient. Clin Immunol. 2011;138:282-0. CrossRef
    26. Sahiratmadja E, Alisjahbana B, de Boer T, Adnan I, Maya A, Danusantoso H, et al. Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun. 2007;75:820-. CrossRef
    27. Meulenbelt I, Droog S, Trommelen GJ, Boomsma DI, Slagboom PE. High-yield noninvasive human genomic DNA isolation method for genetic studies in geographically dispersed families and populations. Am J Hum Genet. 1995;57:1252-.
    28. Stalemark H, Laurencikas E, Karis J, Gavhed D, Fadeel B, Henter JI. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr Blood Cancer. 2008;51:76-1. CrossRef
    29. De Filippi P, Badulli C, Cuccia M, De Silvestri A, Dametto E, Pasi A, et al. Specific polymorphisms of cytokine genes are associated with different risks to develop single-system or multi-system childhood Langerhans cell histiocytosis. Br J Haematol. 2006;132:784-. CrossRef
    30. Prabhu AS, Harishankar M, Selvaraj P. Interferon gamma gene +874A/T polymorphism and intracellular interferon gamma expression in pulmonary tuberculosis. Cytokine. 2010;49:130-. CrossRef
    31. Gautier G, de Saint-Vis B, Senechal B, Pin JJ, Bates EE, Caux C, et al. The class 6 semaphorin SEMA6A is induced by interferon-gamma and defines an activation status of langerhans cells observed in pathological situations. Am J Pathol. 2006;168:453-5. CrossRef
    32. Egeler RM, Favara BE, van Meurs M, Laman JD, Claassen E. Differential In situ cytokine profiles of Langerhans-like cells and T cells in Langerhans cell histiocytosis: abundant expression of cytokines relevant to disease and treatment. Blood. 1999;94:4195-01.
  • 作者单位:Willemijn T. Quispel (1)
    Janine A. Stegehuis-Kamp (1)
    Susy J. Santos (1)
    Annelies van Wengen (2)
    Edward Dompeling (3)
    R. Maarten Egeler (4) (5)
    Esther van de Vosse (2)
    Astrid G. S. van Halteren (1) (6)

    1. Immunology Laboratory, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
    2. Department of Infectious diseases, Leiden University Medical Center, Leiden, The Netherlands
    3. Department of Paediatric Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
    4. Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
    5. Division of Hematology/Oncology, Hospital for Sick Children/University of Toronto, Toronto, Canada
    6. Department of Pediatrics (WAKZ), Immunology Laboratory, P3-P (P3-36), Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
  • ISSN:1573-2592
文摘
Purpose Poly-ostotic Langerhans Cell Histiocytosis (LCH) can be difficult to distinguish clinically and histologically from disseminated infection in manifesting specific subtypes of Mendelian Susceptibility to Mycobacterial Disease (MSMD). In MSMD-patients, dominant negative germline mutations in the IFN-γR1 gene, in particular in exon 6, lead to autosomal dominant IFN-γ receptor 1 deficiency (ADIFNGR1) and can mimic LCH. We hypothesized that similar defects might underlie the pathogenesis of LCH. Methods IFN-γR1 expression was immunohistochemically determined at disease onset in biopsies from 11 LCH-patients and four ADIFNGR1-patients. IFN-γR1 function was analyzed in 18 LCH-patients and 13 healthy controls by assessing the IFN-γ-induced upregulation of Fc-gamma-receptor I (FcγRI) expression on monocytes. Pro-inflammatory cytokine production was measured after stimulation of whole blood with LPS and IFN-γ. Exon 6 of the IFN-γR1 gene was sequenced in 67 LCH-patients to determine whether mutations were present. Results IFN-γR1 expression was high in three LCH-affected biopsies, similar to ADIFNGR1-affected biopsies, but varied from negative to moderate in eight other LCH-affected biopsies. No functional differences in IFN-γ signaling were detected between LCH-patients with active or non-active disease and healthy controls. No germline mutations in exon 6 of the IFN-γR1 gene were detected in any of the 67 LCH-patients. Conclusions In contrast to ADIFNGR1-patients, IFN-γ signaling is fully functional in LCH-patients. Either performed before, during or after treatment, these non-invasive functional assays can distinguish LCH-patients from ADIFNGR1-patients and thereby facilitate correct therapy regimens for patients with recurrent osteolytic lesions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700