Crohn's Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies
详细信息    查看全文
  • 作者:Ersilia M. DeFilippis ; Randy Longman ; Michael Harbus…
  • 关键词:Microbiome ; Personalized medicine ; Inflammatory bowel disease ; Environmental enteropathy ; Epigenetics ; Public health
  • 刊名:Current Gastroenterology Reports
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:350 KB
  • 参考文献:1.Crohn BB, Ginzburg L, Oppenheimer GD. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA. 1984;251:73–9.PubMed CrossRef
    2.Satsangi J, Silverberg MS, Vermeire S, Colombel J-F. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–53.PubMed PubMedCentral CrossRef
    3.Vermeire S, Van Assche G, Rutgeerts P. Classification of inflammatory bowel disease: the old and the new. Curr Opin Gastroenterol. 2012;28:321–6.PubMed CrossRef
    4.Levine A, Griffiths A, Markowitz J, Wilson DC, Turner D, Russell RK, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.PubMed CrossRef
    5.Bernstein CN, Blanchard JF, Rawsthorne P, Yu N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol. 2001;96:1116–22.PubMed CrossRef
    6.Saich R, Chapman R. Primary sclerosing cholangitis, autoimmune hepatitis and overlap syndromes in inflammatory bowel disease. World J Gastroenterol. 2008;14:331–7.PubMed PubMedCentral CrossRef
    7.••
McGovern DPB, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015;149:1163–76. A thorough review and summary of the genome-wide association studies in IBD and the genetic loci that contribute to different phenotypes of the disease.PubMed CrossRef
8.Economou M, Pappas G. New global map of Crohn’s disease: genetic, environmental, and socioeconomic correlations. Inflamm Bowel Dis. 2008;14:709–20.PubMed CrossRef
9.Feinberg AP, Fallin MD. Epigenetics at the crossroads of genes and the environment. JAMA. 2015;314:1129–30.PubMed CrossRef
10.Hugot J-P, Alberti C, Berrebi D, Bingen E, Cézard J-P. Crohn’s disease: the cold chain hypothesis. Lancet. 2003;362:2012–5.PubMed CrossRef
11.Malekzadeh F, Alberti C, Nouraei M, Vahedi H, Zaccaria I, Meinzer U, et al. Crohn’s disease and early exposure to domestic refrigeration. PLoS One. 2009;4:e4288.PubMed PubMedCentral CrossRef
12.Ko Y, Kariyawasam V, Karnib M, Butcher R, Samuel D, Alrubaie A, et al. Inflammatory bowel disease environmental risk factors: a population-based case–control study of Middle Eastern migration to Australia. Clin Gastroenterol Hepatol. 2015;13:1453–63. e1.PubMed CrossRef
13.••
Martin TD, Chan SSM, Hart AR. Environmental factors in the relapse and recurrence of inflammatory bowel disease: a review of the literature. Dig Dis Sci. 2015;60:1396–405. Reinforces Crohn’s disease as a chronic environmental enteropathy that poses public health threat.PubMed CrossRef
14.Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12:205–17.PubMed CrossRef
15.Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, et al. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology. 2015;148:1087–106.PubMed CrossRef
16.Benchimol EI, Mack DR, Guttmann A, Nguyen GC, To T, Mojaverian N, et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am J Gastroenterol. 2015;110:553–63.PubMed CrossRef
17.••
Wang M-H, Achkar J-P. Gene-environment interactions in inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol. 2015;31:277–82. Emphasizes the interplay between environmental and genetic susceptibilities in producing a variety of phenotypes of Crohn’s disease.PubMed CrossRef
18.Huang C, Haritunians T, Okou DT, Cutler DJ, Zwick ME, Taylor KD, et al. Characterization of genetic loci that affect susceptibility to inflammatory bowel diseases in African Americans. Gastroenterology. 2015;149:1575–86.PubMed CrossRef
19.••
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24. Describes the intersection of immunogenetic patterns and signatures in determining the course of IBD.PubMed PubMedCentral CrossRef
20.Hill AVS. Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philos Trans R Soc Lond B Biol Sci. 2012;367:840–9.PubMed PubMedCentral CrossRef
21.Azad AK, Sadee W, Schlesinger LS. Innate immune gene polymorphisms in tuberculosis. Infect Immun. 2012;80:3343–59.PubMed PubMedCentral CrossRef
22.Chiodini RJ, Chamberlin WM, Sarosiek J, McCallum RW. Crohn’s disease and the mycobacterioses: a quarter century later. Causation or simple association? Crit Rev Microbiol. 2012;38:52–93.PubMed CrossRef
23.Waddell LA, Rajić A, Stärk KDC, McEWEN SA. The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiol Infect. 2015;143:3135–57.PubMed CrossRef
24.Naser SA, Sagramsingh SR, Naser AS, Thanigachalam S. Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some inflammatory bowel disease patients. World J Gastroenterol. 2014;20:7403–15.PubMed PubMedCentral CrossRef
25.Coulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL, Yang Y, et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med. 2009;206:1709–16.PubMed PubMedCentral CrossRef
26.Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.PubMed CrossRef
27.Targan SR, Hanauer SB, van Deventer SJH, Mayer L, Present DH, Braakman T, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s disease. N Engl J Med. 1997;337:1029–36.PubMed CrossRef
28.Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10:387–98.PubMed CrossRef
29.Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345:1098–104.PubMed CrossRef
30.••Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, et al. Polymorphisms in the toll-like receptor and the IL-23/IL-17 pathways were associated with susceptibility to inflammatory bowel disease in a Danish cohort. PLoS One. 2015;10:e0145302. Examines the role of IL-23/IL-17 and interferon gamma pathways in the pathogenesis of Crohn’s disease.PubMed PubMedCentral CrossRef
31.Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:1090–100.PubMed CrossRef
32.Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.PubMed CrossRef
33.McLean LP, Cross RK, Shea-Donohue T. Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis. Immunotherapy. 2013;5:923–5.PubMed CrossRef
34.Lee JS, Tato CM, Joyce-Shaikh B, Gulan F, Cayatte C, Chen Y, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43:727–38.PubMed CrossRef
35.Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21:698–708.PubMed CrossRef
36.Desreumaux P. Specific targeting of IL-6 signalling pathway: a new way to treat IBD? Gut. 2000;47:465–6.PubMed PubMedCentral CrossRef
37.Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8.PubMed CrossRef
38.Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012;36:503–16.PubMed CrossRef
39.Bellaguarda E, Chang EB. IBD and the gut microbiota—from bench to personalized medicine. wCurr Gastroenterol Rep. 2015;17:15.CrossRef
40.••Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92. Unexplained heterogeneity in Crohn’s disease phenotypes may be explained by differences in the microbiome among affected individuals.PubMed PubMedCentral CrossRef
41.Longman RS, Swaminath A. Microbial manipulation as primary therapy for Crohn’s disease. World J Gastroenterol. 2013;19:1513–6.PubMed PubMedCentral CrossRef
42.••Dogan B, Suzuki H, Herlekar D, Sartor RB, Campbell BJ, Roberts CL, et al. Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis. 2014;20:1919–32. Examines the dysbiosis and the role of adherent-invasive E. coli in promoting intestinal inflammation and potential therapeutic targets.
43.Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1:403–18.PubMed CrossRef
44.Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 2013;13:711–22.PubMed CrossRef
45.Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.PubMed PubMedCentral CrossRef
46.Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J Gastroenterol. 2014;20:16489–97.PubMed PubMedCentral CrossRef
47.Kolho K-L, Korpela K, Jaakkola T, Pichai MVA, Zoetendal EG, Salonen A, et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol. 2015;110:921–30.PubMed CrossRef
48.Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367–80.PubMed CrossRef
49.Pariente B, Cosnes J, Danese S, Sandborn WJ, Lewin M, Fletcher JG, et al. Development of the Crohn’s disease digestive damage score, the Lémann score. Inflamm Bowel Dis. 2011;17:1415–22.PubMed PubMedCentral CrossRef
50.Baars JE, Nuij VJAA, Oldenburg B, Kuipers EJ, van der Woude CJ. Majority of patients with inflammatory bowel disease in clinical remission have mucosal inflammation. Inflamm Bowel Dis. 2012;18:1634–40.PubMed CrossRef
51.Latella G, Papi C. Crucial steps in the natural history of inflammatory bowel disease. World J Gastroenterol. 2012;18:3790–9.PubMed PubMedCentral CrossRef
52.Shanahan F, Targan S. Medical treatment of inflammatory bowel disease. Annu Rev Med. 1992;43:125–33.PubMed CrossRef
53.Svartz N. Sulfasalazine: II. Some notes on the discovery and development of salazopyrin. Am J Gastroenterol. 1988;83:497–503.PubMed
54.Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013;2:e01202.PubMed PubMedCentral CrossRef
55.Jones JH, Lennard-Jones JE. Corticosteroids and corticotrophin in the treatment of Crohn’s disease. Gut. 1966;7:181–7.PubMed PubMedCentral CrossRef
56.Olaison G, Sjödahl R, Tagesson C. Glucocorticoid treatment in ileal Crohn’s disease: relief of symptoms but not of endoscopically viewed inflammation. Gut. 1990;31:325–8.PubMed PubMedCentral CrossRef
57.Rhodes J, Bainton D, Beck P. Azathioprine in Crohn’s disease. Lancet. 1970;2:1142.PubMed CrossRef
58.Chande N, Tsoulis DJ, MacDonald JK. Azathioprine or 6-mercaptopurine for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2013;4:CD000545.PubMed
59.Present DH, Korelitz BI, Wisch N, Glass JL, Sachar DB, Pasternack BS. Treatment of Crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N Engl J Med. 1980;302:981–7.PubMed CrossRef
60.Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015.
61.Papadakis KA, Shaye OA, Vasiliauskas EA, Ippoliti A, Dubinsky MC, Birt J, et al. Safety and efficacy of adalimumab (D2E7) in Crohn’s disease patients with an attenuated response to infliximab. Am J Gastroenterol. 2005;100:75–9.PubMed CrossRef
62.Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130:323–33. quiz 591.PubMed CrossRef
63.Singh S, Pardi DS. Update on anti-tumor necrosis factor agents in Crohn disease. Gastroenterol Clin North Am. 2014;43:457–78.PubMed CrossRef
64.Loftus EV, Feagan BG, Colombel J-F, Rubin DT, Wu EQ, Yu AP, et al. Effects of adalimumab maintenance therapy on health-related quality of life of patients with Crohn’s disease: patient-reported outcomes of the CHARM trial. Am J Gastroenterol. 2008;103:3132–41.PubMed CrossRef
65.Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95.PubMed CrossRef
66.Bernstein CN. Treatment of IBD: where we are and where we are going. Am J Gastroenterol. 2015;110:114–26.PubMed CrossRef
67.Gisbert JP, Marín AC, McNicholl AG, Chaparro M. Systematic review with meta-analysis: the efficacy of a second anti-TNF in patients with inflammatory bowel disease whose previous anti-TNF treatment has failed. Aliment Pharmacol Ther. 2015;41:613–23.PubMed CrossRef
68.Parsi MA, Achkar J-P, Richardson S, Katz J, Hammel JP, Lashner BA, et al. Predictors of response to infliximab in patients with Crohn’s disease. Gastroenterology. 2002;123:707–13.PubMed CrossRef
69.Nanda KS, Cheifetz AS, Moss AC. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am J Gastroenterol. 2013;108:40–7.PubMed PubMedCentral CrossRef
70.Yanai H, Lichtenstein L, Assa A, Mazor Y, Weiss B, Levine A, et al. Levels of drug and antidrug antibodies are associated with outcome of interventions after loss of response to infliximab or adalimumab. Clin Gastroenterol Hepatol. 2015;13:522–30. e2.PubMed CrossRef
71.Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–83.PubMed CrossRef
72.Cominelli F. Inhibition of leukocyte trafficking in inflammatory bowel disease. N Engl J Med. 2013;369:775–6.PubMed CrossRef
73.Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel J-F, Sands BE, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21.PubMed CrossRef
74.Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel J-F, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710.PubMed CrossRef
75.Bamias G, Clark DJ, Rivera-Nieves J. Leukocyte traffic blockade as a therapeutic strategy in inflammatory bowel disease. Curr Drug Targets. 2013;14:1490–500.PubMed PubMedCentral CrossRef
76.James DG, Seo DH, Chen J, Vemulapalli C, Stone CD. Efalizumab, a human monoclonal anti-CD11a antibody, in the treatment of moderate to severe Crohn’s disease: an open-label pilot study. Dig Dis Sci. 2011;56:1806–10.PubMed CrossRef
77.Kothary N, Diak I-L, Brinker A, Bezabeh S, Avigan M, Dal PG. Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J Am Acad Dermatol. 2011;65:546–51.PubMed CrossRef
78.Lobatón T, Vermeire S, Van Assche G, Rutgeerts P. Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2014;39:579–94.PubMed CrossRef
79.Subei AM, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs. 2015;29:565–75.PubMed CrossRef
80.Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.PubMed CrossRef
81.Löwenberg M, D’Haens G. Next-generation therapeutics for IBD. Curr Gastroenterol Rep. 2015;17:21.PubMed PubMedCentral CrossRef
82.Yacyshyn B, Chey WY, Wedel MK, Yu RZ, Paul D, Chuang E. A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn’s disease. Clin Gastroenterol Hepatol. 2007;5:215–20.PubMed CrossRef
83.Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367:616–24.PubMed CrossRef
84.Konijeti GG, Chan AT. Ustekinumab for moderate-to-severe Crohn’s disease. Gastroenterology. 2013;144:846–8.PubMed CrossRef
85.Sandborn WJ, Gasink C, Gao L-L, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.PubMed CrossRef
86.Sedda S, Marafini I, Dinallo V, Di Fusco D, Monteleone G. The TGF-β/Smad system in IBD Pathogenesis. Inflamm Bowel Dis. 2015
87.Monteleone G, Pallone F. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372:2461.PubMed CrossRef
88.Krishnan K, Arnone B, Buchman A. Intestinal growth factors: potential use in the treatment of inflammatory bowel disease and their role in mucosal healing. Inflamm Bowel Dis. 2011;17:410–22.PubMed CrossRef
89.Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet. 2002;360:1478–80.PubMed CrossRef
90.Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ. Sargramostim in Crohn’s Disease Study Group. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352:2193–201.PubMed CrossRef
91.Korzenik JR, Dieckgraefe BK. An open-labelled study of granulocyte colony-stimulating factor in the treatment of active Crohn’s disease. Aliment Pharmacol Ther. 2005;21:391–400.PubMed CrossRef
92.Dejaco C, Lichtenberger C, Miehsler W, Oberhuber G, Herbst F, Vogelsang H, et al. An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn’s disease. Digestion. 2003;68:63–70.PubMed CrossRef
93.Colombel JF, Lémann M, Cassagnou M, Bouhnik Y, Duclos B, Dupas JL, et al. A controlled trial comparing ciprofloxacin with mesalazine for the treatment of active Crohn’s disease. Groupe d’Etudes Thérapeutiques des Affections Inflammatoires Digestives (GETAID). Am J Gastroenterol. 1999;94:674–8.PubMed CrossRef
94.Jonkers D, Penders J, Masclee A, Pierik M. Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs. 2012;72:803–23.PubMed CrossRef
95.Wang Z-K, Yang Y-S, Chen Y, Yuan J, Sun G, Peng L-H. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol. 2014;20:14805–20.PubMed PubMedCentral CrossRef
96.Cui B, Feng Q, Wang H, Wang M, Peng Z, Li P, et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol. 2015;30:51–8.PubMed CrossRef
97.Rutgeerts P, Goboes K, Peeters M, Hiele M, Penninckx F, Aerts R, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338:771–4.PubMed CrossRef
98.Fichera A, McCormack R, Rubin MA, Hurst RD, Michelassi F. Long-term outcome of surgically treated Crohn’s colitis: a prospective study. Dis Colon Rectum. 2005;48:963–9.PubMed CrossRef
99.Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002;15:79–94.PubMed PubMedCentral CrossRef
100.Gerich ME, McGovern DPB. Towards personalized care in IBD. Nat Rev Gastroenterol Hepatol. 2014;11:287–99.PubMed CrossRef
101.Anand V, Russell AS, Tsuyuki R, Fedorak R. Perinuclear antineutrophil cytoplasmic autoantibodies and anti-Saccharomyces cerevisiae antibodies as serological markers are not specific in the identification of Crohn’s disease and ulcerative colitis. Can J Gastroenterol. 2008;22:33–6.PubMed PubMedCentral CrossRef
102.••Bonneau J, Dumestre-Perard C, Rinaudo-Gaujous M, Genin C, Sparrow M, Roblin X, et al. Systematic review: new serological markers (anti-glycan, anti-GP2, anti-GM-CSF Ab) in the prediction of IBD patient outcomes. Autoimmun Rev. 2015;14:231–45. Describes serological markers and their role in personalizing therapeutic and management decisions in patients with Crohn’s disease.PubMed CrossRef
103.Däbritz J, Bonkowski E, Chalk C, Trapnell BC, Langhorst J, Denson LA, et al. Granulocyte macrophage colony-stimulating factor auto-antibodies and disease relapse in inflammatory bowel disease. Am J Gastroenterol. 2013;108:1901–10.PubMed CrossRef
104.Mosli MH, Sandborn WJ, Kim RB, Khanna R, Al-Judaibi B, Feagan BG. Toward a personalized medicine approach to the management of inflammatory bowel disease. Am J Gastroenterol. 2014;109:994–1004.PubMed CrossRef
105.Gerbarg PL, Jacob VE, Stevens L, Bosworth BP, Chabouni F, DeFilippis EM, et al. The effect of breathing, movement, and meditation on psychological and physical symptoms and inflammatory biomarkers in inflammatory bowel disease: a randomized controlled trial. Inflamm Bowel Dis. 2015;21:2886–96.PubMed CrossRef
106.Siegel CA. Shared decision making in inflammatory bowel disease: helping patients understand the tradeoffs between treatment options. Gut. 2012;61:459–65.PubMed CrossRef
  • 作者单位:Ersilia M. DeFilippis (1)
    Randy Longman (2)
    Michael Harbus (3)
    Kyle Dannenberg (4)
    Ellen J. Scherl (5)

    1. Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02120, USA
    2. Jill Roberts Center for Inflammatory Bowel Disease, Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York Presbyterian Hospital-Weill Cornell Medical College, 1315 York Avenue, Mezzanine Level, New York, NY, 10065, USA
    3. New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
    4. Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
    5. Jill Roberts Center for Inflammatory Bowel Disease, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, 1315 York Avenue, Mezzanine Level, New York, NY, 10065, USA
  • 刊物主题:Gastroenterology;
  • 出版者:Springer US
  • ISSN:1534-312X
  • 文摘
    Crohn’s disease (CD) is a chronic, systemic, immune-mediated inflammation of the gastrointestinal tract. Originally described in 1932 as non-caseating granulomatous inflammation limited to the terminal ileum, it is now recognized as an expanding group of heterogeneous diseases defined by intestinal location, extent, behavior, and systemic extraintestinal manifestations. Joint diseases, including inflammatory spondyloarthritis and ankylosing spondylitis, are the most common extraintestinal manifestations of CD and share more genetic susceptibility loci than any other inflammatory bowel disease (IBD) trait. The high frequency and overlap with genes associated with infectious diseases, specifically Mendelian susceptibility to mycobacterial diseases (MSMD), suggest that CD may represent an evolutionary adaptation to environmental microbes. Elucidating the diversity of the enteric microbiota and the protean mucosal immune responses in individuals may personalize microbiome-targeted therapies and molecular classifications of CD. This review will focus on CD’s natural history and therapies in the context of epigenetics, immunogenetics, and the microbiome.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700