Molecular Dynamics Study of Surface Anisotropy in \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) Alloy at Nanoscale
详细信息    查看全文
文摘
In the present study, molecular dynamics simulation has been performed to investigate the anisotropic behavior of free standing \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) nanorods. We choose different orientations with various cross sections to study the dynamics of thermal behavior of \(\hbox {Ag}_{60}\; \hbox {Cu}_{40}\) nanorods. The system is modeled using embedded atom method potentials. The radial distribution functions are analyzed to reveal the dynamic evolution of the structural behavior of nanorods with different orientations and sample sizes. The total energy and mean square displacement is also calculated to characterize the melting phenomenon of various samples. The melting temperature of the nanorods is found to be significantly size and orientation dependent, and it increases with the increase in cross-sectional area. The nanorods with low-index crystallographic surfaces such as (110) exhibit lowest melting temperature as compared to compact surfaces (111).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700