Structured catalysts for methanol-to-olefins conversion: a review
详细信息    查看全文
  • 作者:Jasper Lefevere (1) (2)
    Steven Mullens (1)
    Vera Meynen (2)
    Jasper Van Noyen (1)
  • 关键词:methanol ; to ; olefins ; structured catalyst ; zeolites ; SAPO ; 34 ; ZSM ; 5
  • 刊名:Chemical Papers
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:68
  • 期:9
  • 页码:1143-1153
  • 全文大小:
  • 参考文献:1. Aramburo, L. R., Karwacki, L., Cubillas, P., Asahina, S., de Winter, D. M., Drury, M. R., Buurmans, I. L. C., Stavicki, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzik, F., Post, J. A., Anderson, M. W., Terasaki, O., & Weckhuysen, B. M. (2011). The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. / Chemistry a European Journal, / 17, 13773鈥?3781. DOI: 10.1002/chem.201101361. CrossRef
    2. Aranzabal, A., Iturbe, D., Romero-S谩ez, M., Gonz谩lez-Marcos, M. P., Gonz谩lez-Velasco, J. R., & Gonz谩lez-Marcos, J. A. (2010). Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite. / Chemical Engineering Journal, / 162, 415鈥?23. DOI: 10.1016/j.cej.2010.05.043. CrossRef
    3. Bj酶rgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. / Journal of Catalysis, / 249, 195鈥?07. DOI: 10.1016/j.jcat.2007.04.006. CrossRef
    4. Bleken, F. L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., & Louis, B. (2012). Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. / Applied Catalysis A: General, / 447鈥?48, 178鈥?85. DOI: 10.1016/j.apcata.2012.09.025. CrossRef
    5. Buciuman, F. C., & Kraushaar-Czarnetzki, B. (2001). Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. / Catalysis Today, / 69, 337鈥?42. DOI: 10.1016/s0920-5861(01)00387-x. CrossRef
    6. Chae, H. J., Song, Y. H., Jeong, K. E., Kim, C. U., & Jeong, S. Y. (2010). Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction. / Journal of Physics and Chemistry of Solids, / 71, 600鈥?03. DOI: 10.1016/j.jpcs.2009.12.046. CrossRef
    7. Chen, D., Moljord, K., Fuglerud, T., & Holmen, A. (1999). The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. / Microporous and Mesoporous Materials, / 29, 191鈥?03. DOI: 10.1016/s1387-1811(98)00331-x. CrossRef
    8. Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. / Catalysis Today, / 106, 103鈥?07. DOI: 10.1016/j.cattod.2005.07.178. CrossRef
    9. Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. / Microporous and Mesoporous Materials, / 164, 239鈥?50. DOI: 10.1016/j.micromeso.2012.06.046. CrossRef
    10. Dahl, I. M., & Kolboe, S. (1993). On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. / Catalysis Letters, / 20, 329鈥?36. DOI: 10.1007/bf00769305. CrossRef
    11. Dahl, I. M., & Kolboe, S. (1994). On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. / Journal of Catalysis, / 149, 458鈥?64. DOI: 10.1006/jcat.1994.1312. CrossRef
    12. Dahl, I. M., Wendelbo, R., Andersen, A., Akporiaye, D., Mostad, H., & Fuglerud, T. (1999). The effect of crystallite size on the activity and selectivity of the reaction of ethanol and 2-propanol over SAPO-34. / Microporous and Mesoporous Materials, / 29, 159鈥?71. DOI: 10.1016/s1387-1811(98)00328-x. CrossRef
    13. Dai, C. N., Lei, Z. G., Li, Q. S., & Chen, B. H. (2012). Pressure drop and mass transfer study in structured catalytic packings. / Separation and Purification Technology, / 98, 78鈥?7. DOI: 10.1016/j.seppur.2012.06.035. CrossRef
    14. Dietrich, B. (2012). Pressure drop correlation for ceramic and metal sponges. / Chemical Engineering Science, / 74, 192鈥?99. DOI: 10.1016/j.ces.2012.02.047. CrossRef
    15. Ferreira Madeira, F., Ben Tayeb, K., Pinard, L., Vezin, H., Maury, S., & Cadran, N. (2012). Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. / Applied Catalysis A: General, / 443鈥?44, 171鈥?80. DOI: 10.1016/j.apcata.2012.07.037. CrossRef
    16. Ferrizz, R. M., Stuecker, J. N., Cesarano, J., III., & Miller, J. E. (2005). Monolithic supports with unique geometries and enhanced mass transfer. / Industrial & Engineering Chemistry Research, / 44, 302鈥?08. DOI: 10.1021/ie049468r. CrossRef
    17. Furumoto, Y., Harada, Y., Tsunoji, N., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. / Applied Catalysis A: General, / 399, 262鈥?67. DOI: 10.1016/j.apcata.2011.04.009. CrossRef
    18. Guo, W. Y., Xiao, W. D., & Luo, M. (2012). Comparison among monolithic and randomly packed reactors for the methanolto-propylene process. / Chemical Engineering Journal, / 207鈥?08, 734鈥?45. DOI: 10.1016/j.cej.2012.07.046. CrossRef
    19. Guo, W. Y., Wu, W. H., Luo, M., & Xiao, W. D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. / Fuel Processing Technology, / 108, 133鈥?38. DOI: 10.1016/j.fuproc.2012.06.005. CrossRef
    20. Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. / ChemPhysChem, / 14, 1526鈥?545. DOI: 10.1002/cphc.201201023. CrossRef
    21. Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K. P., Bj酶rgen, M., Weckhuysen, B. M., & Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over HSAPO-34 catalysts. / Journal of Catalysis, / 264, 77鈥?7. DOI: 10.1016/j.jcat.2009.03.009. CrossRef
    22. Inoue, K., Okabe, K., Inaba, M., Takahara, I., & Murata, K. (2010). Metal modification effects on ethanol conversion to propylene by H-ZSM-5 with Si/Al2 ratio of 150. / Reaction Kinetics, Mechanisms and Catalysis, / 101, 477鈥?89. DOI: 10.1007/s11144-010-0245-4. CrossRef
    23. Ivanova, S., Louis, B., Madani, B., Tessonnier, J. P., Ledoux, M. J., & Pham Huu, C. (2007). ZSM-5 coatings on / 尾-SiC monoliths: Possible new structured catalyst for the methanol-toolefins process. / Journal of Physical Chemistry C, / 111, 4368鈥?374. DOI: 10.1021/jp067535k. CrossRef
    24. Ivanova, S., Vanhaecke, E., Dreibine, L., Louis, B., Pham, C., & Pham Huu, C. (2009). Binderless HZSM-5 coating on / 尾-SiC for different alcohols dehydration. / Applied Catalysis A: General, / 359, 151鈥?57. DOI: 10.1016/j.apcata.2009.02.024. CrossRef
    25. Jiao, Y. L., Jiang, C. H., Yang, Z. M., & Zhang, J. S. (2012). Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application. / Microporous and Mesoporous Materials, / 162, 152鈥?58. DOI: 10.1016/j.micromeso.2012.05.034. CrossRef
    26. Jiao, Y. L., Jiang, C. H., Yang, Z. M., Liu, J., & Zhang, J. S. (2013). Synthesis of highly accessible ZSM-5 coatings on SiC foam support for MTP reaction. / Microporous and Mesoporous Materials, / 181, 201鈥?07. DOI: 10.1016/j.micromeso.2013.07.013. CrossRef
    27. Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J., & Patience, G. S. (2007). Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. / Chemical Engineering Science, / 62, 5527鈥?532. DOI: 10.1016/j.ces.2006.12.076. CrossRef
    28. Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. / Microporous and Mesoporous Materials, / 29, 49鈥?6. DOI: 10.1016/s1387-1811(98)00320-5. CrossRef
    29. Lee, Y. J., Lee, J. S., Park, Y. S., & Yoon, K. B. (2001). Synthesis of large monolithic zeolite foams with variable macropore architectures. / Advanced Materials, / 13, 1259鈥?263. DOI: 10.1002/1521-4095(200108)13:16銆?259::aid-adma1259銆?.0.co;2-u. CrossRef
    30. Lee, Y. J., Kim, Y. W., Jun, K. W., Viswanadham, N., Bae, J. W., & Park, H. S. (2009). Textural properties and catalytic applications of ZSM-5 monolith foam for methanol conversion. / Catalysis Letters, / 129, 408鈥?15. DOI: 10.1007/s10562-008-9811-z. CrossRef
    31. Lee, Y. J., Kim, Y. W., Viswanadham, N., Jun, K. W., & Bae, J. W. (2010). Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. / Applied Catalysis A: General, / 374, 18鈥?5. DOI: 10.1016/j.apcata.2009.11.019. CrossRef
    32. Lefevere, J., Gysen, M., Mullens, S., Meynen, V., & Van Noyen, J. (2013). The benefit of design of support architectures for zeolite coated structured catalysts for alcoholto-olefin conversion. / Catalysis Today, / 216, 18鈥?3. DOI: 10.1016/j.cattod.2013.05.020. CrossRef
    33. Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. / Biomaterials, / 24, 2363鈥?378. DOI: 10.1016/s0142-9612(03)00030-9. CrossRef
    34. Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. III. (2006). Direct ink writing of three-dimensional ceramic structures. / Journal of the American Ceramic Society, / 89, 3599鈥?609. DOI: 10.1111/j.1551-2916.2006.01382.x. CrossRef
    35. Li, J. Z., Wei, Y. X., Liu, G. G., Qi, Y., Tian, P., Li, B., He, Y. L., & Liu, Z. M. (2011). Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. / Catalysis Today, / 171, 221鈥?28. DOI: 10.1016/j.cattod.2011.02.027. CrossRef
    36. Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., & Schwieger, W. (2011). Zeolitic materials with hierarchical porous structures. / Advanced Materials, / 23, 2602鈥?615. DOI: 10.1002/adma.201100462. CrossRef
    37. Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P., & Maciel Pereira, M. (2010). Hierarchical pore ZSM-5 zeolite structures: From micro-to macro-engineering of structured catalysts. / Chemical Engineering Journal, / 161, 397鈥?02. DOI: 10.1016/j.cej.2009.09.041. CrossRef
    38. McCann, D. M., Lesthaeghe, D., Kletnieks, P. W., Guenther, D. R., Hayman, M. J., Van Speybroeck, V., Waroquier, M., & Haw, J. F. (2008). A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. / Angewandte Chemie International Edition, / 47, 5179鈥?182. DOI: 10.1002/anie.200705453. CrossRef
    39. Meng, T., Mao, D. S., Guo, Q. S., & Lu, G. Z. (2012). The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. / Catalysis Communications, / 21, 52鈥?7. DOI: 10.1016/j.catcom.2012.01.030. CrossRef
    40. Menges, M., & Kraushaar-Czarnetzki, B. (2012). Kinetics of methanol to olefins over AlPO4-bound ZSM-5 extrudates in a two-stage unit with dimethyl ether pre-reactor. / Microporous and Mesoporous Materials, / 164, 172鈥?81. DOI: 10.1016/j.micromeso.2012.07.012. CrossRef
    41. Mitchell, S., Michels, N. L., Kunze, K., & P茅rez-Ramirez, J. (2012). Visualisation of hierarchically structured zeolite bodies from macro to nano length scales. / Nature Chemistry, / 4, 825鈥?31. DOI: 10.1038/nchem.1403. CrossRef
    42. Mitchell, S., Michels, N. L., & P茅rez-Ram铆rez, J. (2013). From powder to technical body: the undervalued science of catalyst scale up. / Chemical Society Reviews, / 2013, 6094鈥?112. DOI: 10.1039/c3cs60076a. CrossRef
    43. M枚ller, K. P., B枚hringer, W., Schnitzler, A. E., van Steen, E., & O鈥機onnor, C. T. (1999). The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5. / Microporous and Mesoporous Materials, / 29, 127鈥?44. DOI: 10.1016/s1387-1811(98)00326-6. CrossRef
    44. Mores, D., Stavitski, E., Kox, M. H. F., Kornatowski, J., Olsbye, U., & Weckhuysen, B. M. (2008). Space- and timeresolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. / Chemistry 鈥?A European Journal, / 14, 11320鈥?1327. DOI: 10.1002/chem.200801293. CrossRef
    45. Ocampo, F., Cunha, J. A., de Lima Santos, M. R., Tessonnier, J. P., Pereira, M. M., & Louis, B. (2010). Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. / Applied Catalysis A: General, / 390, 102鈥?09. DOI: 10.1016/j.apcata.2010.09.037. CrossRef
    46. Olsbye, U., Bj酶rgen, M., Svelle, S., Lillerud, K. P., & Kolboe, S. (2005). Mechanistic insight into the methanol-tohydrocarbons reaction. / Catalysis Today, / 106, 108鈥?11. DOI: 10.1016/j.cattod.2005.07.135. CrossRef
    47. Olsbye, U., Svelle, S., Bj酶rgen, M., Beato, P., Janssens, T. V. W., Joensen, F., Bordiga, S., & Lillerud, K. P. (2012). Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. / Angewandte Chemie International Edition, / 51, 5810鈥?831. DOI: 10.1002/anie.201103657. CrossRef
    48. Pangarkar, K., Schildhauer, T. J., Ruud van Ommen, J., Nijenhuis, J., Kapteijn, F., & Moulijn, J. A. (2008). Structured packings for multiphase catalytic reactors. / Industrial & Engineering Chemistry Research, / 47, 3720鈥?751. DOI: 10.1021/ie800067r. CrossRef
    49. Park, J. W., Kim, S. J., Seo, M. G., Kim, S. Y., Sugi, Y., & Seo, G. (2008a). Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions. / Applied Catalysis A: General, / 349, 76鈥?5. DOI: 10.1016/j.apcata.2008.07.006. CrossRef
    50. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., & Seo, G. (2008b). Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions. / Applied Catalysis A: General, / 339, 36鈥?4. DOI: 10.1016/j.apcata.2008.01.005. CrossRef
    51. Patcas, F. C. (2005). The methanol-to-olefins conversion over zeolite-coated ceramic foams. / Journal of Catalysis, / 231, 194鈥?00. DOI: 10.1016/j.jcat.2005.01.016. CrossRef
    52. Perdana, I., Creaser, D., Lindmark, J., & Hedlund, J. (2010). Influence of NOx adsorbed species on component permeation through ZSM-5 membranes. / Journal of Membrane Science, / 349, 83鈥?9. DOI: 10.1016/j.memsci.2009.11.030. CrossRef
    53. Rahimi, N., & Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. / Applied Catalysis A: General, / 398, 1鈥?7. DOI: 10.1016/j.apcata.2011.03.009. CrossRef
    54. Ren, T., Patel, M. K., & Blok, K. (2008). Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs. / Energy, / 33, 817鈥?33. DOI: 10.1016/j.energy.2008.01.002.
    55. Ren, T., Dani毛ls, B., Patel, M. K., & Blok, K. (2009). Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030鈥?050. / Resources, Conservation and Recycling, / 53, 653鈥?63. DOI: 10.1016/j.resconrec.2009.04.016. CrossRef
    56. Rownaghi, A. A., Rezaei, F., & Hedlund, J. (2011). Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. / Catalysis Communications, / 14, 37鈥?1. DOI:10.1016/j.catcom.2011.07.015. CrossRef
    57. Sano, T., Kiyozumi, Y., & Shin, S. (1992). Synthesis of light olefins from methanol using ZSM-5 type zeolite catalysts. / Journal of the Japan Petroleum Institute, / 35, 429鈥?40. CrossRef
    58. Seijger, G. B. F., Oudshoorn, O. L., van Kooten, W. E. J., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports. / Microporous and Mesoporous Materials, / 39, 195鈥?04. DOI: 10.1016/s1387-1811(00)00196-7. CrossRef
    59. Shan, Z., van Kooten, W. E. J., Oudshoorn, O. L., Jansen, J. C., van Bekkum, H., van den Bleek, C. M., & Calis, H. P. A. (2000). Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis. / Microporous and Mesoporous Materials, / 34, 81鈥?1. DOI: 10.1016/s1387-1811(99)00161-4. CrossRef
    60. St枚cker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. / Microporous and Mesoporous Materials, / 29, 3鈥?8. DOI: 10.1016/s1387-1811(98)00319-9. CrossRef
    61. Stuecker, J. N., Miller, J. E., Ferrizz, R. E., Mudd, J. E., & Cesarano, J., III. (2004). Advanced support structures for enhanced catalytic activity. / Industrial & Engineering Chemistry Research, / 43, 51鈥?5. DOI: 10.1021/ie030291v. CrossRef
    62. Svelle, S., R酶ning, P. O., & Kolboe, S. (2004). Kinetic studies of zeolite-catalyzed methylation reactions: 1. Coreaction of [12C]ethene and [13C]methanol. / Journal of Catalysis, / 224, 115鈥?23. DOI: 10.1016/j.jcat.2004.02.022. CrossRef
    63. Svelle, S., R酶ning, P. O., Olsbye, U., & Kolboe, S. (2005). Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C] / n-butene and [13C]methanol. / Journal of Catalysis, / 234, 385鈥?00. DOI: 10.1016/j.jcat.2005.06.028. CrossRef
    64. Tago, T., Iwakai, K., Morita, K., Tanaka, K., & Masuda, T. (2005). Control of acid-site location of ZSM-5 zeolite membrane and its application to the MTO reaction. / Catalysis Today, / 105, 662鈥?66. DOI: 10.1016/j.cattod.2005.06.009. CrossRef
    65. Taheri Najafabadi, A., Fatemi, S., Sohrabi, M., & Salmasi, M. (2012). Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. / Journal of Industrial and Engineering Chemistry, / 18, 29鈥?7. DOI: 10.1016/j.jiec.2011.11.088. CrossRef
    66. Takahashi, A., Xia, W., Nakamura, I., Shimada, H., & Fujitani, T. (2012). Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. / Applied Catalysis A: General, / 423鈥?24, 162鈥?67. DOI: 10.1016/j.apcata.2012.02.029. CrossRef
    67. Total Petrochemicals (2008). / MTO/OCP: a strategic research project. Testing innovative processes for making plastics. Brussels, Belgium: Total Petrochemicals.
    68. Ulla, M. A., Mallada, R., Coronas, J., Gutierrez, L., Mir贸, E., & Santamar铆a, J. (2003). Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. / Applied Catalysis A: General, / 253, 257鈥?69. DOI: 10.1016/s0926-860x(03)00498-8. CrossRef
    69. Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. / Catalysis Today, / 106, 118鈥?22. DOI: 10.1016/j.cattod.2005.07.132. CrossRef
    70. Van Noyen, J., De Wilde, A., Schroeven, M., Mullens, S., & Luyten, J. (2012). Ceramic processing techniques for catalyst design: Formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. / International Journal of Applied Ceramic Technology, / 9, 902鈥?10. DOI: 10.1111/j.1744-7402.2012.02781.x. CrossRef
    71. Wender, I. (1996). Reactions of synthesis gas. / Fuel Processing Technology, / 48, 189鈥?97. DOI: 10.1016/s0378-3820(96)01048-x. CrossRef
    72. Westg氓rd Erichsen, M., Svelle, S., & Olsbye, U. (2013). HSAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength. / Journal of Catalysis, / 298, 94鈥?01. DOI: 10.1016/j.jcat.2012.11.004. CrossRef
    73. Wu, X. C., & Anthony, R. G. (2001). Effect of feed composition on methanol conversion to light olefins over SAPO-34. / Applied Catalysis A: General, / 218, 241鈥?50. DOI: 10.1016/s0926-860x(01)00651-2. CrossRef
    74. Wu, W. Z., Guo, W. Y., Xiao, W., & Luo, M. (2011). Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. / Chemical Engineering Science, / 66, 4722鈥?732. DOI: 10.1016/j.ces.2011.06.036. CrossRef
    75. Yang, H. Q., Liu, Z. C., Gao, H. X., & Xie, Z. K. (2010). Synthesis and catalytic performances of hierarchical SAPO-34 monolith. / Journal of Materials Chemistry, / 20, 3227鈥?231. DOI: 10.1039/b924736j. CrossRef
    76. Yang, Y., Sun, C., Du, J. M., Yue, Y. H., Hua, W. M., Zhang, C. L., Shen, W., & Xu, H. (2012). The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. / Catalysis Communications, / 24, 44鈥?7. DOI: 10.1016/j.catcom.2012.03.013. CrossRef
    77. Yao, J. F., Zeng, C. F., Zhang, L. X., & Xu, N. P. (2008). Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs. / Materials Chemistry and Physics, / 112, 637鈥?40. DOI: 10.1016/j.matchemphys.2008.06.019. CrossRef
    78. Yilmaz, B., & M眉ller, U. (2009). Catalytic applications of zeolites in chemical industry. / Topics in Catalysis, / 52, 888鈥?95. DOI: 10.1007/s11244-009-9226-0. CrossRef
    79. Zamaniyan, A., Mortazavi, Y., Khodadadi, A. A., & Manafi, H. (2010). Tube fitted bulk monolithic catalyst as novel structured reactor for gas-solid reactions. / Applied Catalysis A: General, / 385, 214鈥?23. DOI: 10.1016/j.apcata.2010.07.014. CrossRef
    80. Zamaro, J. M., Ulla, M. A., & Mir贸, E. (2005). Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. / Chemical Engineering Journal, / 106, 25鈥?3. DOI: 10.1016/j.cej.2004.11.003. CrossRef
    81. Zamaro, J. M., & Mir贸, E. E. (2010). Novel binderless zeolite-coated monolith reactor for environmental applications. / Chemical Engineering Journal, / 165, 701鈥?08. DOI: 10.1016/j.cej.2010.10.014. CrossRef
    82. Zampieri, A., Kullmann, S., Selvam, T., Bauer, J., Schwieger, W., Sieber, H., Fey, T., & Greil, P. (2006). Bioinspired rattanderived SiSiC/zeolite monoliths: Preparation and characterisation. / Microporous and Mesoporous Materials, / 90, 162鈥?74. DOI: 10.1016/j.micromeso.2005.10.049. CrossRef
    83. Zhu, J., Fan, Y. Q., & Xu, N. P. (2011). Modified dipcoating method for preparation of pinhole-free ceramic membranes. / Journal of Membrane Science, / 367, 14鈥?0. DOI: 10.1016/j.memsci.2010.10.024. CrossRef
    84. Zhuang, Y. Q., Gao, X., Zhu, Y. P., & Luo, Z. H. (2012). CFD modeling of methanol to olefins process in a fixed-bed reactor. / Powder Technology, / 221, 419鈥?30. DOI: 10.1016/j.powtec. 2012.01.041. CrossRef
  • 作者单位:Jasper Lefevere (1) (2)
    Steven Mullens (1)
    Vera Meynen (2)
    Jasper Van Noyen (1)

    1. Sustainable Materials Management, Flemish Institute for Technological Research - VITO, Boeretang 200, B-2400, Mol, Belgium
    2. Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
  • ISSN:1336-9075
文摘
Conversion of methanol to light olefins is a promising alternative for the conversion of new feed-stocks such as gas, coal or biomass to ethylene and propylene via the methanol-to-olefins (MTO) process. During the last decade, the use of structured catalysts in this reaction has received increasing attention. The effect of such structured catalysts on the stability and selectivity is discussed in this review. The reaction and coking mechanism show the importance of good mass transfer properties of the catalyst in the MTO reaction. Important aspects such as thickness of the coating, crystal size of the zeolite and architecture of the support on the mass transfer properties of the final catalyst are highlighted. An overview of the results of structured catalysts used in the MTO reaction is presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700