Community-dependent foraging habits of flower visitors: cascading indirect interactions among five bumble bee species
详细信息    查看全文
  • 作者:Hiroshi S. Ishii (1)
  • 关键词:Bombus terrestris ; Cascading effect ; Multidimensional interactions ; Nectar robbing ; Pollinator
  • 刊名:Ecological Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:28
  • 期:4
  • 页码:603-613
  • 全文大小:467KB
  • 参考文献:1. Baude M, Danchin é, Mugabo M, Dajoz I (2011) Conspecifics as informers and competitors: an experimental study in foraging bumble-bees. Proc Biol Sci 278:2806-813. doi:10.1098/rspb.2010.2659 CrossRef
    2. Cartar RV (2004) Resource-tracking by bumble bees: responses to plant-level differences in quality. Ecology 85:2764-771. doi:10.1890/03-0484 CrossRef
    3. Dawson EH, Chittka L (2012) Conspecific and heterospecific information use in bumblebees. PLoS ONE 7:e31444. doi:10.1371/journal.pone.0031444 CrossRef
    4. Dedej S, Delaplane KS (2004) Nectar-robbing carpenter bees reduce seed-setting capability of honey bees (Hymenoptera: Apidae) in rabbiteye blueberry, / Vaccinium ashei, ‘Climax- Environ Entomol 33:100-06. doi:10.1603/0046-225X-33.1.100 CrossRef
    5. Diek?tter T, Kadoya T, Peter F, Wolters V, Jauker F (2010) Oilseed rape crops distort plant-pollinator interactions. J Appl Ecol 47:209-14. doi:10.1111/j.1365-2664.2009.01759.x CrossRef
    6. Dohzono IK, Kunitake KY, Yokoyama J, Goka K (2008) Alien bumble bee affects native plant reproduction through interactions with native bumble bees. Ecology 89:3082-092. doi:10.1890/07-1491.1 CrossRef
    7. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609-28. doi:10.1111/j.2007.0906-7590.05171.x CrossRef
    8. Eaton GW, Stewart MG (1969) Blueberry blossom damage caused by bumblebees. Can Entomol 101:149-50 CrossRef
    9. Goka K (1998) Influence of invasive species on native species: will the European bumblebee, / Bombus terrestris, bring genetic pollution into the Japanese native species (in Japanese with English summary)? Bull Biogeogr Soc Jpn 53:91-01
    10. Goka K, Okabe K, Yoneda M (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization. Popul Ecol 48:285-91. doi:10.1007/s10144-006-0010-8 CrossRef
    11. Gong YB, Huang SQ (2011) Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia 166:671-80. doi:10.1007/s00442-011-1910-7 CrossRef
    12. Goodale E, Beauchamp G, Magrath RD, Nieh JC, Ruxton GD (2010) Interspecific information transfer influences animal community structure. Trends Ecol Evol 25:354-61. doi:10.1016/j.tree.2010.01.002 CrossRef
    13. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1-6. doi:10.1146/annurev.ecolsys.34.011802.132355 CrossRef
    14. Heinrich B (1976) Resource partitioning among some eusocial insects: bumblebees. Ecology 57:874-89. doi:10.2307/1941054 CrossRef
    15. Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat 124:377-06. doi:10.1086/284280 CrossRef
    16. Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced / Bombus terrestris (L.) (Hymenoptera: Apidae). J Insect Conserv 12:135-46. doi:10.1007/s10841-007-9071-z CrossRef
    17. Inouye DW (1978) Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59:672-78. doi:10.2307/1938769 CrossRef
    18. Inouye DW (1980) The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 45:197-01. doi:10.1007/BF00346460 CrossRef
    19. Inouye DW (1983) The ecology of nectar robbing. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, Columbia, pp 153-73
    20. Irwin RE (2000) Hummingbird avoidance of nectar-robbed plants: spatial location or visual cues. Oikos 91:499-06. doi:10.1034/j.1600-0706.2000.910311.x CrossRef
    21. Irwin RE (2006) Consequences of direct versus indirect species interactions to selection on traits: pollination and nectar robbing in / Ipomopsis aggregata. Am Nat 167:315-28. doi:10.1086/499377 CrossRef
    22. Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271-92. doi:10.1146/annurev.ecolsys.110308.120330 CrossRef
    23. Ishii HS, Kadoya T, Kikuchi R, Suda SI, Washitani I (2008a) Habitat and flower resource partitioning by an exotic and three native bumble bees in central Hokkaido, Japan. Biol Conserv 141:2597-607. doi:10.1016/j.biocon.2008.07.029 CrossRef
    24. Ishii HS, Hirabayashi Y, Gaku K (2008b) Combined effects of inflorescence architecture, display size, plant density and empty flowers on bumble bee behaviour: experimental study with artificial inflorescences. Oecologia 156:341-50. doi:10.1007/s00442-008-0991-4 CrossRef
    25. Jacobs J (1974) Quantitative measurements of food selection. A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14:413-17. doi:10.1007/BF00384581 CrossRef
    26. Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Schaefer HM, Stang M (2012) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol. doi:10.1111/1365-2435.12005
    27. Kawaguchi LG, Ohashi K, Toquenaga Y (2007) Contrasting responses of bumble bees to feeding conspecifics on their familiar and unfamiliar flowers. Proc Biol Sci 274:2661-667. doi:10.1098/rspb.2007.0860 CrossRef
    28. Lázaro A, Hegland SJ, Totland ? (2008) The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157:249-57. doi:10.1007/s00442-008-1066-2 CrossRef
    29. Leadbeater E, Chittka L (2007) The dynamics of social learning in an insect model, the bumblebee ( / Bombus terrestris). Behav Ecol Sociobiol 61:1789-796. doi:10.1007/s00265-007-0412-4 CrossRef
    30. Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two competing stingless bee species. Behav Ecol Sociobiol 65:763-74. doi:10.1007/s00265-010-1080-3 CrossRef
    31. McCall C, Primack RB (1992) Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am J Bot 79:434-42 CrossRef
    32. Morris WF, Bronstein JL, Wilson WG (2003) Three-way coexistence in obligate mutualist-exploiter interactions: the potential role of competition. Am Nat 161:860-75. doi:10.1086/375175 CrossRef
    33. Navarro L (2001) Reproductive biology and effect of nectar robbing on fruit production in / Macleania bullata (Ericaceae). Plant Ecol 152:59-5. doi:10.1023/A:1011463520398 CrossRef
    34. Newman DA, Thomson JD (2005) Effects of nectar robbing on nectar dynamics and bumblebee foraging strategies in / Linaria vulgaris (Scrophulariaceae). Oikos 110:309-20. doi:10.1111/j.0030-1299.2005.13884.x CrossRef
    35. Pleasants JM (1983) Structure of plant and pollinator communities. In: Jones CE, Little RJ (eds) Handhook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 375-93
    36. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    37. Ranta E, Vapsalainen K (1981) Why are there so many species? Spatio-temporal heterogeneity and northern bumble bee communities. Oikos 36:28-4 CrossRef
    38. Richards KW (1978) Nest site selection by bumble bees (Hymenoptera: Apidae) in southern Alberta. Can Entomol 110:301-18. doi:10.4039/Ent110301-3 CrossRef
    39. Roubik DW (1982) The ecological impact of nectar-robbing bees and pollinating hummingbirds on a tropical shrub. Ecology 63:354-60. doi:10.2307/1938953 CrossRef
    40. Saito M (1995) The bumblebees in Kamishihoro, eastern part of Taisetsuzan (Daisetsuzan) Mountains (in Japanese). Bull Higashi Taisetsu Mus Nat Hist 17:25-6
    41. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445-457. doi:10.1093/aob/mcp057 CrossRef
    42. Worden BD, Papaj DR (2005) Flower choice copying in bumblebees. Biol Lett 1:504-07. doi:10.1098/rsbl.2005.0368 CrossRef
  • 作者单位:Hiroshi S. Ishii (1)

    1. Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
文摘
Despite the ubiquity and the importance of interspecific interactions among flower visitors, few studies have examined their effects on the realized feeding niches of visitor species in a community context. To evaluate the community-wide effects of interactions among flower visitors, I have examined changes in the flower utilization patterns of each visitor species at several sites where the component of the visitor’s community differed. Specifically, I compared the flower preferences and foraging habits (legitimate foraging vs. primary nectar robbing vs. secondary nectar robbing) of five bumble bee species in flower patches consisting of Trifolium pratense L. (red clover) and T. repens L. (white clover) on Hokkaido Island, Japan. I also examined the nectar production and standing crops of each flower species to evaluate the exploitation competition based on nectar. The bumble bee species exhibited different flower utilization patterns among sites. At sites where the long-tongued Bombus diversus tersatus was common and the exotic short-tongued B. terrestris was rare, B. diversus tersatus visited red clover (long-tubed flowers) exclusively, whereas medium-tongued B. pseudobaicalensis and short-tongued B. hypocrita sapporoensis and B. hypnorum koropokkrus preferentially visited white clover (short-tubed flowers). Conversely, at sites where the long-tongued bee was rare, four other species frequently visited red clover in different modes: B. pseudobaicalensis visited legitimately, B. hypocrita sapporoensis and B. terrestris visited as primary nectar robbers, and B. hypnorum koropokkrus visited as a secondary nectar robber. The presence or absence of resource exploitation by the long-tongued species and the interaction between primary and secondary nectar robbers via robbing holes was the major ecological sources of these differences. Diverse effects of interactions among flower visitors played important roles in shaping pattern of plant and flower visitor interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700