A ghost fluid method for sharp interface simulations of compressible multiphase flows
详细信息    查看全文
  • 作者:Sahand Majidi ; Asghar Afshari
  • 关键词:Compressible multiphase flow ; Ghost fluid method ; Level ; set ; Surface tension ; Viscous flows
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:30
  • 期:4
  • 页码:1581-1593
  • 全文大小:1,372 KB
  • 参考文献:[1]J. C. Hermanson, Dynamics of supersonic droplets of volatile liquids, AIAA Journal, 45 3 (2007) 730–733.
    [2]R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, 431 (2001) 239–271.MATH
    [3]E. Johnsen and T. Colonius, Shock-induced collapse of a gas bubble in shockwave lithotripsy, The Journal of the Acoustical Society of America, 124 4 (2008) 2011–2020.
    [4]A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, 202 2 (2005) 664–698.MathSciNet MATH
    [5]R. Saurel, F. Petitpas and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, 228 5 (2009) 1678–1712.MathSciNet MATH
    [6]F. Gibou, L. Chen, D. Nguyen and S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change, Journal of Computational Physics, 222 2 (2007) 536–555.MathSciNet MATH
    [7]A. Prosperetti and G. Tryggvason, Computational methods for multiphase flow, Cambridge University Press (2007).
    [8]I.-L. Chern, J. Glimm, O. McBryan, B. Plohr and S. Yaniv, Front tracking for gas dynamics, Journal of Computational Physics, 62 1 (1986) 83–110.MathSciNet MATH
    [9]J. B. Bell, P. Colella and M. L. Welcome, Conservative fronttracking for inviscid compressible flow, Proc. in 10th Computational Fluid Dynamics Conference: AIAA, Honolulu, Hawaii, USA (1991) 814–822.
    [10]S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, 100 1 (1992) 25–37.MATH
    [11]J. Glimm, J. W. Grove, X. L. Li, K.-M. Shyue, Y. Zeng and Q. Zhang, Three-dimensional front tracking, SIAM Journal on Scientific Computing, 19 3 (1998) 703–727.MathSciNet MATH
    [12]G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, A fronttracking method for the computations of multiphase flow, Journal of Computational Physics, 169 2 (2001) 708–759.MATH
    [13]R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annual Review of Fluid Mechanics, 31 1 (1999) 567–603.MathSciNet
    [14]M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114 1 (1994) 146–159.MATH
    [15]W. J. Rider and D. B. Kothe, Reconstructing volume tracking, Journal of Computational Physics, 141 2 (1998) 112–152.MathSciNet MATH
    [16]J. E. Pilliod and E. G. Puckett, Second-order accurate volumeof-fluid algorithms for tracking material interfaces, Journal of Computational Physics, 199 2 (2004) 465–502.MathSciNet MATH
    [17]Y.-Y. Tsui, S.-W. Lin, T.-T. Cheng and T.-C. Wu, Fluxblending schemes for interface capture in two-fluid flows, International Journal of Heat and Mass Transfer, 52 23 (2009) 5547–5556.MATH
    [18]A. Cervone, S. Manservisi and R. Scardovelli, An optimal constrained approach for divergence-free velocity interpolation and multilevel VOF method, Computers & Fluids, 47 1 (2011) 101–114.MathSciNet MATH
    [19]C. Wu, D. Young and H. Wu, Simulations of multidimensional interfacial flows by an improved volume-of-fluid method, International Journal of Heat and Mass Transfer, 60 (2013) 739–755.
    [20]X. Jiang, G. Siamas, K. Jagus and T. Karayiannis, Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays, Progress in Energy and Combustion Science, 36 2 (2010) 131–167.
    [21]H. K. Myong, Numerical simulation of multiphase flows with material interface on an unstructured grid system, Journal of Mechanical Science and Technology, 26 5 (2012) 1347–1354.
    [22]Y. Renardy and M. Renardy, PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of Computational Physics, 183 2 (2002) 400–421.MathSciNet MATH
    [23]K. Yokoi, A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: Numerical simulations of droplet splashing, Journal of Computational Physics, 232 1 (2013) 252–271.MathSciNet
    [24]I. Ginzburg and G. Wittum, Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants, Journal of Computational Physics, 166 2 (2001) 302–335.MATH
    [25]M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian and M. W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, Journal of Computational Physics, 213 1 (2006) 141–173.MATH
    [26]S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, Springer Science & Business Media, 153 (2003).MATH
    [27]M. Gorokhovski and M. Herrmann, Modeling primary atomization, Annual Review of Fluid Mechanics, 40 (2008) 343–366.MathSciNet MATH
    [28]J. Sethian and P. Smereka, Level set methods for fluid interfaces, Annual Review of Fluid Mechanics, 35 1 (2003) 341–372.MathSciNet MATH
    [29]D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics, 183 1 (2002) 83–116.MathSciNet MATH
    [30]M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, Journal of Computational Physics, 227 4 (2008) 2674–2706.MathSciNet MATH
    [31]B. Ningegowda and B. Premachandran, A Coupled Level Set and Volume of Fluid method with multi-directional advection algorithms for two-phase flows with and without phase change, International Journal of Heat and Mass Transfer, 79 (2014) 532–550.
    [32]S. Shin, Direct numerical simulation of multiphase flow for arbitrary geometry using level contour reconstruction method, Journal of Mechanical Science and Technology, 23 7 (2009) 1795–1800.
    [33]E. Olsson, G. Kreiss and S. Zahedi, A conservative level set method for two phase flow II, Journal of Computational Physics, 225 1 (2007) 785–807.MathSciNet MATH
    [34]D. Hartmann, M. Meinke and W. Schröder, The constrained reinitialization equation for level set methods, Journal of Computational Physics, 229 5 (2010) 1514–1535.MathSciNet MATH
    [35]E. Brun, A. Guittet and F. Gibou, A local level-set method using a hash table data structure, Journal of Computational Physics, 231 6 (2012) 2528–2536.MathSciNet MATH
    [36]R. P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A nonoscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics, 152 2 (1999) 457–492.MathSciNet MATH
    [37]T. Liu, B. Khoo and K. Yeo, Ghost fluid method for strong shock impacting on material interface, Journal of Computational Physics, 190 2 (2003) 651–681.MATH
    [38]X. Y. Hu and B. C. Khoo, An interface interaction method for compressible multifluids, Journal of Computational Physics, 198 1 (2004) 35–64.MATH
    [39]T. Liu, B. Khoo and C. Wang, The ghost fluid method for compressible gas–water simulation, Journal of Computational Physics, 204 1 (2005) 193–221.MathSciNet MATH
    [40]S. K. Sambasivan and H. Udaykumar, Ghost fluid method for strong shock interactions Part 1: Fluid-fluid interfaces, AIAA Journal, 47 12 (2009) 2907–2922.
    [41]S. K. Sambasivan and H. UdayKumar, Sharp interface simulations with Local Mesh Refinement for multi-material dynamics in strongly shocked flows, Computers & Fluids, 39 9 (2010) 1456–1479.MathSciNet MATH
    [42]S. K. Sambasivan and H. Udaykumar, A sharp interface method for high-speed multi-material flows: strong shocks and arbitrary materialpairs, International Journal of Computational Fluid Dynamics, 25 3 (2011) 139–162.MATH
    [43]R. W. Houim and K. K. Kuo, A ghost fluid method for compressible reacting flows with phase change, Journal of Computational Physics, 235 (2013) 865–900.MathSciNet
    [44]W. Bo and J. W. Grove, A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Computers & Fluids, 90 (2014) 113–122.MathSciNet
    [45]S. Majidi and A. Afshari, Towards numerical simulations of supersonic liquid jets using ghost fluid method, International Journal of Heat and Fluid Flow, 53 (2015) 98–112.
    [46]S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation of the American Mathematical Society, 67 221 (1998) 73–85.MathSciNet MATH
    [47]E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science & Business Media (2009).MATH
    [48]A. S. D. Rallu, A multiphase fluid-structure computational framework for underwater implosion problems, Stanford University (2009).
    [49]X. Hu, N. Adams and G. Iaccarino, On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, Journal of Computational Physics, 228 17 (2009) 6572–6589.MathSciNet MATH
    [50]R. L. Holmes, G. Dimonte, B. Fryxell, M. L. Gittings, J. W. Grove, M. Schneider, D. H. Sharp, A. L. Velikovich, R. P. Weaver and Q. Zhang, Richtmyer–Meshkov instability growth: experiment, simulation and theory, Journal of Fluid Mechanics, 389 (1999) 55–79.MathSciNet MATH
    [51]J.-F. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, Journal of Fluid Mechanics, 181 (1987) 41–76.
    [52]S. Kokh and F. Lagoutiere, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, Journal of Computational Physics, 229 8 (2010) 2773–2809.MathSciNet MATH
    [53]J. J. Quirk and S. Karni, On the dynamics of a shock–bubble interaction, Journal of Fluid Mechanics, 318 (1996) 129–163.MATH
    [54]K.-M. Shyue, A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, Journal of Computational Physics, 215 1 (2006) 219–244.MathSciNet MATH
    [55]K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, Journal of Computational Physics, 142 1 (1998) 208–242.MathSciNet MATH
    [56]N. Bourne and J. Field, Shock-induced collapse of single cavities in liquids, Journal of Fluid Mechanics, 244 (1992) 225–240.
    [57]H. Terashima and G. Tryggvason, A front-tracking/ghostfluid method for fluid interfaces in compressible flows, Journal of Computational Physics, 228 11 (2009) 4012–4037.MATH
    [58]R. R. Nourgaliev, T.-N. Dinh and T. G. Theofanous, Adaptive characteristics-based matching for compressible multifluid dynamics, Journal of Computational Physics, 213 2 (2006) 500–529.MATH
    [59]C. Turangan, A. Jamaluddin, G. Ball and T. Leighton, Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water, Journal of Fluid Mechanics, 598 (2008) 1–25.MATH
    [60]N. Hawker and Y. Ventikos, Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study, Journal of Fluid Mechanics, 701 (2012) 59–97.MATH
    [61]S. Quan and D. P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, Journal of Computational Physics, 221 2 (2007) 761–780.MathSciNet MATH
    [62]S. Shin, S. Abdel-Khalik, V. Daru and D. Juric, Accurate representation of surface tension using the level contour reconstruction method, Journal of Computational Physics, 203 2 (2005) 493–516.MATH
    [63]D. E. Fyfe, E. S. Oran and M. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, Journal of Computational Physics, 76 2 (1988) 349–384.MATH
  • 作者单位:Sahand Majidi (1)
    Asghar Afshari (1)

    1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700