A 2D Axisymmetric Mixture Multiphase Model for Bottom Stirring in a BOF Converter
详细信息    查看全文
  • 作者:Ari Kruskopf
  • 刊名:Metallurgical and Materials Transactions B
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:48
  • 期:1
  • 页码:619-631
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology;
  • 出版者:Springer US
  • ISSN:1543-1916
  • 卷排序:48
文摘
A process model for basic oxygen furnace (BOF) steel converter is in development. The model will take into account all the essential physical and chemical phenomena, while achieving real-time calculation of the process. The complete model will include a 2D axisymmetric turbulent multiphase flow model for iron melt and argon gas mixture, a steel scrap melting model, and a chemical reaction model. A novel liquid mass conserving mixture multiphase model for bubbling gas jet is introduced in this paper. In-house implementation of the model is tested and validated in this article independently from the other parts of the full process model. Validation data comprise three different water models with different volume flow rates of air blown through a regular nozzle and a porous plug. The water models cover a wide range of dimensionless number \( R_{\text{p}} \), which include values that are similar for industrial-scale steel converter. The k–ε turbulence model is used with wall functions so that a coarse grid can be utilized. The model calculates a steady-state flow field for gas/liquid mixture using control volume method with staggered SIMPLE algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700