On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates
详细信息    查看全文
  • 作者:Dana Černá ; Václav Finěk
  • 关键词:15A12 ; 41A15 ; 65F50 ; 65N12 ; 65T60 ; Wavelet ; Riesz bases ; cubic Hermite spline ; homogeneous Dirichlet boundary conditions ; condition numbers ; sparse representations
  • 刊名:Results in Mathematics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:69
  • 期:1-2
  • 页码:225-243
  • 全文大小:721 KB
  • 参考文献:1.Bittner, K.: On the stability of compactly supported biorthogonal spline wavelets. Approximation Theory XII, San Antonio, 38–49 (2007)
    2.Bramble J.H., Cohen A., Dahmen W.: Multiscale Problems and Methods in Numerical Simulations. Springer, Berlin (2003)CrossRef MATH
    3.Černá D., Finěk V.: Construction of optimally conditioned cubic spline wavelets on the interval. Adv. Comput. Math. 34, 219–252 (2011)MathSciNet CrossRef MATH
    4.Černá D., Finěk V.: Cubic spline wavelets with complementary boundary conditions. Appl. Math. Comput. 219, 1853–1865 (2012)MathSciNet CrossRef MATH
    5.Černá D., Finěk V.: Approximate multiplication in adaptive wavelet methods. Cent. Eur. J. Math. 11, 972–983 (2013)MathSciNet MATH
    6.Černá D., Finěk V.: Quadratic spline wavelets with short support for fourth-order problems. Results Math. 66, 525–540 (2014)MathSciNet CrossRef MATH
    7.Černá D., Finěk V.: Cubic spline wavelets with short support for fourth-order problems. Appl. Math. Comput. 243, 44–56 (2014)MathSciNet CrossRef
    8.Ciarlet, P.: Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)
    9.Cohen A., Dahmen W., DeVore R.: Adaptive wavelet schemes for elliptic operator equations—convergence rates. Math. Comput. 70, 27–75 (2001)MathSciNet CrossRef MATH
    10.Cohen A., Dahmen W., DeVore R.: Adaptive wavelet methods II—beyond the elliptic case. Found. Math. 2, 203–245 (2002)MathSciNet CrossRef MATH
    11.Dahmen W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 2, 341–361 (1996)MathSciNet MATH
    12.Dahmen W., Stevenson R.: Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 319–352 (1999)MathSciNet CrossRef MATH
    13.Dijkema T.J., Schwab C., Stevenson R.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30, 423–455 (2009)MathSciNet CrossRef MATH
    14.Dijkema T.J., Stevenson R.: A sparse Laplacian in tensor product wavelet coordinates. Numer. Math. 115, 433–449 (2010)MathSciNet CrossRef MATH
    15.Griebel M., Oswald P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4, 171–206 (1995)MathSciNet CrossRef MATH
    16.Primbs M.: New stable biorthogonal spline wavelets on the interval. Results Math. 57, 121–162 (2010)MathSciNet CrossRef MATH
    17.Stevenson R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41, 1074–1100 (2003)MathSciNet CrossRef MATH
    18.Urban K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press, Oxford (2009)MATH
  • 作者单位:Dana Černá (1)
    Václav Finěk (1)

    1. Department of Mathematics and Didactics of Mathematics, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9012
文摘
Important parts of adaptive wavelet methods are well-conditioned wavelet stiffness matrices and an efficient approximate multiplication of quasi-sparse stiffness matrices with vectors in wavelet coordinates. Therefore it is useful to develop a well-conditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in each column is bounded by a constant. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in the tensor product wavelet basis is also sparse. Then a matrix–vector multiplication can be performed exactly with linear complexity. In this paper, we construct a wavelet basis based on Hermite cubic splines with respect to which both the mass matrix and the stiffness matrix corresponding to a one-dimensional Poisson equation are sparse. Moreover, a proposed basis is well-conditioned on low decomposition levels. Small condition numbers for low decomposition levels and a sparse structure of stiffness matrices are kept for any well-conditioned second order partial differential equations with constant coefficients; furthermore, they are independent of the space dimension. Keywords Wavelet Riesz bases cubic Hermite spline homogeneous Dirichlet boundary conditions condition numbers sparse representations

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700