Counting dynamically synchronizing processes
详细信息    查看全文
文摘
We address the problem of automatically establishing correctness for programs generating an arbitrary number of concurrent processes and manipulating variables ranging over an infinite domain. The programs we consider can make use of the shared variables to count and synchronize the spawned processes. This allows them to implement intricate synchronization mechanisms, such as barriers. Automatically verifying correctness, and deadlock freedom, of such programs is beyond the capabilities of current techniques. For this purpose, we make use of counting predicates that mix counters referring to the number of processes satisfying certain properties and variables directly manipulated by the concurrent processes. We then combine existing works on counter, predicate, and constrained monotonic abstraction and build a nested counter example based refinement scheme for establishing correctness (expressed as non-reachability of configurations satisfying counting predicates formulas). We have implemented a tool (Pacman, for predicated constrained monotonic abstraction) and used it to perform parameterized verification on several programs whose correctness crucially depends on precisely capturing the number of processes synchronizing using shared variables.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700