A comparison of isothermal with nonisothermal drying kinetics of municipal sewage sludge
详细信息    查看全文
  • 作者:X. Y. Zhang ; M. Q. Chen
  • 关键词:Sewage sludge ; Drying ; Isothermal kinetics ; Nonisothermal kinetics ; Nitrogen atmosphere
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:665-673
  • 全文大小:877 KB
  • 参考文献:1.Tyagi VK, Lo S-L. Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev. 2013;25:708–28. doi:10.​1016/​j.​rser.​2013.​05.​029 .CrossRef
    2.Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental and economic life cycle assessment of current and future sewage sludge to energy technologies. Waste Manag. 2014;34(1):185–95. doi:10.​1016/​j.​wasman.​2013.​08.​024 .CrossRef
    3.Tuncal T, Uslu O. A review of dehydration of various industrial sludges. Drying Technol. 2014;32(14):1642–54. doi:10.​1080/​07373937.​2014.​909846 .CrossRef
    4.Kelessidis A, Stasinakis AS. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012;32(6):1186–95. doi:10.​1016/​j.​wasman.​2012.​01.​012 .CrossRef
    5.Wahidunnabi AK, Eskicioglu C. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge. Water Res. 2014;66:430–46. doi:10.​1016/​j.​watres.​2014.​08.​045 .CrossRef
    6.Hong J, Xu C, Tan X, Chen W. Life cycle assessment of sewage sludge co-incineration in a coal-based power station. Waste Manag. 2013;33(9):1843–52. doi:10.​1016/​j.​wasman.​2013.​05.​007 .CrossRef
    7.Jin L, Zhang G, Tian H. Current state of sewage treatment in China. Water Res. 2014;66:85–98. doi:10.​1016/​j.​watres.​2014.​08.​014 .CrossRef
    8.Zhu F, Jiang H, Zhang Z, Zhao L, Wang J, Hu J, et al. Research on drying effect of different additives on sewage sludge. Proced Environ Sci. 2012;16:357–62. doi:10.​1016/​j.​proenv.​2012.​10.​051 .CrossRef
    9.Zhu F, Zhang Z, Jiang H, Zhao L. The study of sewage sludge thermo-drying efficiency. Proced Environ Sci. 2012;16:363–7. doi:10.​1016/​j.​proenv.​2012.​10.​052 .CrossRef
    10.Bennamoun L, Arlabosse P, Léonard A. Review on fundamental aspect of application of drying process to wastewater sludge. Renew Sustain Energy Rev. 2013;28:29–43. doi:10.​1016/​j.​rser.​2013.​07.​043 .CrossRef
    11.Chen G, Lock Yue P, Mujumdar AS. Sludge dewatering and drying. Drying Technol. 2006;20(4–5):883–916. doi:10.​1081/​drt-120003768 .
    12.Cieślik BM, Namieśnik J, Konieczka P. Review of sewage sludge management: standards, regulations and analytical methods. J Clean Prod. 2015;90:1–15. doi:10.​1016/​j.​jclepro.​2014.​11.​031 .CrossRef
    13.Chen D, Zhang Y, Zhu X. Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy Fuels. 2012;26(7):4189–94.CrossRef
    14.Font R, Gomez-Rico MF, Fullana A. Skin effect in the heat and mass transfer model for sewage sludge drying. Sep Purif Technol. 2011;77(1):146–61. doi:10.​1016/​j.​seppur.​2010.​12.​001 .CrossRef
    15.Leonard A, Vandevenne P, Salmon T, Marchot P, Crine M. Wastewater sludge convective drying: influence of sludge origin. Environ Technol. 2004;25(9):1051–7. doi:10.​1080/​09593330.​2004.​9619398 .CrossRef
    16.Celma AR, Cuadros F, López-Rodríguez F. Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioprod Process. 2012;90(2):224–34. doi:10.​1016/​j.​fbp.​2011.​04.​003 .CrossRef
    17.Léonard A, Blacher S, Marchot P, Pirard JP, Crine M. Convective drying of wastewater sludges: influence of air temperature, superficial velocity, and humidity on the kinetics. Drying Technol. 2005;23(8):1667–79. doi:10.​1081/​drt-200065082 .CrossRef
    18.Cai J, Liu R. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels. 2007;21(6):3695–7. doi:10.​1021/​ef700442n .CrossRef
    19.Chen D, Zheng Y, Zhu X. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour Technol. 2012;107:451–5. doi:10.​1016/​j.​biortech.​2011.​12.​032 .CrossRef
    20.Joardder MUH, Karim A, Kumar C, Brown RJ. Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Proced Eng. 2014;90:538–43. doi:10.​1016/​j.​proeng.​2014.​11.​769 .CrossRef
    21.Madhava M, Rao PS, Goswami TK. Drying kinetics of paddy using thermogravimetric analysis. Drying Technol. 2001;19(6):1201–10. doi:10.​1081/​drt-100104815 .CrossRef
    22.Luo F, Dong B, Dai L, He Q, Dai X. Change of thermal drying characteristics for dewatered sewage sludge based on anaerobic digestion. J Therm Anal Calorim. 2012;114(1):307–12. doi:10.​1007/​s10973-012-2879-0 .CrossRef
    23.Qian J, Yoon YW, Youn PS, Kim JH, Choi DS, Choi J-H, et al. Drying characteristics of sewage sludge. Korean J Chem Eng. 2011;28(7):1636–40. doi:10.​1007/​s11814-011-0009-5 .CrossRef
    24.Chen D-Y, Zhang D, Zhu X-F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. 2012;109(2):847–54.CrossRef
    25.Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour Technol. 2013;131:40–6. doi:10.​1016/​j.​biortech.​2012.​12.​136 .CrossRef
    26.Vyazovkin SV, Lesnikovich AI, Goryachko VI. A method of comparing kinetic curves obtained under isothermal and nonisothermal conditions. Thermochim Acta. 1991;177:259–64. doi:10.​1016/​0040-6031(91)80102-O .CrossRef
    27.Cai J, Chen S. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol. 2008;26(12):1464–8. doi:10.​1080/​0737393080241211​6 .CrossRef
    28.Fornasini P. The uncertainty in physical measurements—an introduction to data analysis in the physics laboratory. New York: Springer; 2008.
    29.Pusat S, Akkoyunlu MT, Erdem HH, Dağdaş A. Drying kinetics of coarse lignite particles in a fixed bed. Fuel Process Technol. 2015;130:208–13. doi:10.​1016/​j.​fuproc.​2014.​10.​023 .CrossRef
    30.Doymaz İ. Effect of pre-treatments using potassium metabisulphide and alkaline Ethyl Oleate on the drying kinetics of Apricots. Biosyst Eng. 2004;89(3):281–7. doi:10.​1016/​j.​biosystemseng.​2004.​07.​009 .CrossRef
    31.Biswas S, Mohanty P, Sharma DK. Studies on synergism in the cracking and co-cracking of Jatropha oil, vacuum residue and high density polyethylene: kinetic analysis. Fuel Process Technol. 2013;106:673–83. doi:10.​1016/​j.​fuproc.​2012.​10.​001 .CrossRef
    32.Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76. doi:10.​1016/​s0040-6031(03)00144-8 .CrossRef
    33.Criado JM. On the theoretical basis of the hancock and sharp “ln.ln method” of kinetic analysis of isothermal data. Thermochim Acta. 1980;39(3):361–2. doi:10.​1016/​0040-6031(80)87092-4 .CrossRef
    34.Chen MQ, Chen YX, Jia L, Zhang YG, Li QH, Meng AH. Kinetic analysis on the drying of high moisture MSW. Heat Transf Asian Res. 2009;38(4):216–22.CrossRef
    35.Erceg M, Kovačić T, Klarić I. Poly(3-hydroxybutyrate) nanocomposites: isothermal degradation and kinetic analysis. Thermochim Acta. 2009;485(1–2):26–32. doi:10.​1016/​j.​tca.​2008.​12.​002 .CrossRef
    36.Liu HM, Chen MQ, Han ZL, Fu BA. Isothermal kinetics based on two-periods scheme for co-drying of biomass and lignite. Thermochim Acta. 2013;573:25–31. doi:10.​1016/​j.​tca.​2013.​08.​030 .CrossRef
    37.Kok MV, Özgür E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106:739–43. doi:10.​1016/​j.​fuproc.​2012.​10.​010 .CrossRef
    38.Ma Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251–9. doi:10.​1016/​j.​enconman.​2014.​09.​074 .CrossRef
    39.Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta. 2003;406(1–2):1–7. doi:10.​1016/​S0040-6031(03)00222-3 .CrossRef
    40.Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. doi:10.​1016/​j.​tca.​2011.​03.​034 .CrossRef
    41.Salmas CE, Tsetsekou AH, Hatzilyberis KS, Androutsopoulos GP. Evolution lignite mesopore structure during drying. Effect of temperature and heating time. Drying Technol. 2001;19(1):35–64. doi:10.​1081/​drt-100001351 .CrossRef
    42.Belhamri A. Characterization of the first falling rate period during drying of a porous material. Drying Technol. 2003;21(7):1235–52. doi:10.​1081/​drt-120023178 .CrossRef
    43.Choudhury D, Sahu JK, Sharma GD. Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind Crops Prod. 2011;33(1):211–6. doi:10.​1016/​j.​indcrop.​2010.​10.​014 .CrossRef
    44.Lasagabaster A, Abad MJ, Barral L, Ares A. FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films. Eur Polymer J. 2006;42(11):3121–32. doi:10.​1016/​j.​eurpolymj.​2006.​03.​029 .CrossRef
    45.Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol. 2011;102(2):1246–53.CrossRef
    46.Feng H, Tang J, John Dixon-Warren S. Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis. Drying Technol. 2000;18(6):1183–99. doi:10.​1080/​0737393000891777​1 .CrossRef
  • 作者单位:X. Y. Zhang (1) (2)
    M. Q. Chen (1) (2)

    1. Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
    2. Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, Beijing, 100044, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Thermal drying behavior of the municipal sewage sludge in nitrogen atmosphere was explored using a thermal analysis technique under isothermal and nonisothermal drying conditions. The Midilli model, \( {\text{MR}} = \exp ( - kt^{\text{n}} ) + bt \), was the best suitable for predicting both the isothermal and nonisothermal drying behavior of the sewage sludge with the highest R 2. The isothermal drying apparent activation energies of the first falling rate period and the second falling rate period were 18.03 and 11.87 kJ mol−1, respectively. The nonisothermal drying apparent activation energies of sewage sludge were from 33.61 to 47.37 kJ mol−1 in the first falling rate period and from 20.47 to 33.43 kJ mol−1 in the second falling rate period, respectively. In two falling rate periods, the dominant mechanism functions for the isothermal drying were identical, \( - \ln (1 - \alpha ) \). The dominant mechanism functions for the first falling rate period and the second falling rate period in the nonisothermal drying were described by \( [ - \ln (1 - \alpha )]^{1/2} \) and \( [ - \ln (1 - \alpha )]^{1/3} \), respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700