Biofilm formation by clinical isolates and the implications in chronic infections
详细信息    查看全文
  • 作者:Carlos J Sanchez Jr (1)
    Katrin Mende (2) (3)
    Miriam L Beckius (4)
    Kevin S Akers (1) (3)
    Desiree R Romano (1)
    Joseph C Wenke (1)
    Clinton K Murray (3)
  • 关键词:Biofilm formation ; Clinical isolates ; Chronic infection ; Multidrug ; resistant ; MRSA
  • 刊名:BMC Infectious Diseases
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:698KB
  • 参考文献:1. Bergogne-Berezin E, Decre D, Joly-Guillou ML: Opportunistic nosocomial multiply resistant bacterial infections--their treatment and prevention. / J Antimicrob Chemother 1993,32(Suppl A):39-7. jac/32.suppl_A.39">CrossRef
    2. McGrath EJ, Asmar BI: Nosocomial infections and multidrug-resistant bacterial organisms in the pediatric intensive care unit. / Indian J Pediatr 2011, 78:176-84. CrossRef
    3. Edwards R, Harding KG: Bacteria and wound healing. / Curr Opin Infect Dis 2004, 17:91-6. CrossRef
    4. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. / Nat Rev Microbiol 2004, 2:95-08. CrossRef
    5. Percival SL: Biofilms and their potential role in wound healing. / Wounds 2004, 16:234-40.
    6. Costerton JW: Introduction to biofilm. / Int J Antimicrob Agents 1999, 11:217-21. discussion 237-19 CrossRef
    7. Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S: The pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. / PLoS One 2012, 7:e31092. journal.pone.0031092">CrossRef
    8. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. / J Bacteriol 2002, 184:1140-154. jb.184.4.1140-1154.2002">CrossRef
    9. Anderson GG, O'Toole GA: Innate and induced resistance mechanisms of bacterial biofilms. / Curr Top Microbiol Immunol 2008, 322:85-05. CrossRef
    10. Mah TF, O’Toole GA: Mechanisms of biofilm resistance to antimicrobial agents. / Trends Microbiol 2001, 9:34-9. CrossRef
    11. Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H: Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. / Infect Immun 2011, 79:2267-276. CrossRef
    12. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T: Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. / J Immunol 2011, 186:6585-596. jimmunol.1002794">CrossRef
    13. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM: Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. / Wound Repair Regen 2008, 16:23-9. j.1524-475X.2007.00303.x">CrossRef
    14. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D: Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). / PLoS One 2008, 3:e3326. journal.pone.0003326">CrossRef
    15. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS: Biofilms in chronic wounds. / Wound Repair Regen 2008, 16:37-4. j.1524-475X.2007.00321.x">CrossRef
    16. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. / Science 1999, 284:1318-322. CrossRef
    17. Donlan RM, Costerton JW: Biofilms: survival mechanisms of clinically relevant microorganisms. / Clin Microbiol Rev 2002, 15:167-93. CrossRef
    18. Garza-Gonzalez E, Morfin-Otero R, Martinez-Vazquez MA, Gonzalez-Diaz E, Gonzalez-Santiago O, Rodriguez-Noriega E: Microbiological and molecular characterization of human clinical isolates of Staphylococcus cohnii, Staphylococcus hominis, and Staphylococcus sciuri. / Scand J Infect Dis 2011, 43:930-36. CrossRef
    19. Kawamura H, Nishi J, Imuta N, Tokuda K, Miyanohara H, Hashiguchi T, Zenmyo M, Yamamoto T, Ijiri K, Kawano Y, Komiya S: Quantitative analysis of biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) strains from patients with orthopaedic device-related infections. / FEMS Immunol Med Microbiol 2011, 63:10-5. j.1574-695X.2011.00821.x">CrossRef
    20. Kwon AS, Park GC, Ryu SY, Lim DH, Lim DY, Choi CH, Park Y, Lim Y: Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. / Int J Antimicrob Agents 2008, 32:68-2. j.ijantimicag.2008.02.009">CrossRef
    21. Reiter KC TGDASP, CF DEO, D’Azevedo PA: High biofilm production by invasive multiresistant staphylococci. / APMIS 2011, 119:776-81. j.1600-0463.2011.02807.x">CrossRef
    22. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S: Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. / J Med Microbiol 2008, 57:1018-023. jmm.0.2008/000968-0">CrossRef
    23. Cremet L, Corvec S, Bemer P, Bret L, Lebrun C, Lesimple B, Miegeville AF, Reynaud A, Lepelletier D, Caroff N: Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains. / J Infect 2012, 64:169-75. j.jinf.2011.11.010">CrossRef
    24. Revdiwala S, Rajdev BM, Mulla S: Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. / Crit Care Res Pract 2012, 2012:945805.
    25. Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML: Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. / Antimicrob Agents Chemother 2005, 49:2612-617. CrossRef
    26. Wang X, Qiu S, Yao X, Tang T, Dai K, Zhu Z: Berberine inhibits Staphylococcus epidermidis adhesion and biofilm formation on the surface of titanium alloy. / J Orthop Res 2009, 27:1487-492. jor.20917">CrossRef
    27. Akers KS, Mende K, Yun HC, Hospenthal DR, Beckius ML, Yu X, Murray CK: Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a U.S. military hospital. / Antimicrob Agents Chemother 2009, 53:2693-695. CrossRef
    28. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC: Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. / J Clin Microbiol 2003, 41:5113-120. CrossRef
    29. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B: Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. / J Clin Microbiol 1995, 33:2233-239.
    30. Cassat JE, Lee CY, Smeltzer MS: Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. / Methods Mol Biol 2007, 391:127-44. CrossRef
    31. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. / J Clin Microbiol 1985, 22:996-006.
    32. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A: The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. / J Clin Microbiol 1999, 37:1771-776.
    33. Coraca-Huber DC, Fille M, Hausdorfer J, Pfaller K, Nogler M: Evaluation of MBEC-HTP biofilm model for studies of implant associated infections. / J Orthop Res 2012, 30:1176-180. jor.22065">CrossRef
    34. Knezevic P, Petrovic O: A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. / J Microbiol Methods 2008, 74:114-18. j.mimet.2008.03.005">CrossRef
    35. Merritt JH, Kadouri DE, O’Toole GA: Growing and analyzing static biofilms. / Curr Protoc Microbiol 2005, Chapter 1:Unit 1B 1.
    36. Church D, Elsayed S, Reid O, Winston B, Lindsay R: Burn wound infections. / Clin Microbiol Rev 2006, 19:403-34. CrossRef
    37. Mine Y, Higuchi W, Taira K, Nakasone I, Tateyama M, Yamamoto T, Uezato H, Takahashi K: Nosocomial outbreak of multidrug-resistant USA300 methicillin-resistant Staphylococcus aureus causing severe furuncles and carbuncles in Japan. / J Dermatol 2011, 38:1167-171. j.1346-8138.2011.01284.x">CrossRef
    38. Rajamohan G, Srinivasan VB, Gebreyes WA: Biocide-tolerant multidrug-resistant Acinetobacter baumannii clinical strains are associated with higher biofilm formation. / J Hosp Infect 2009, 73:287-89. j.jhin.2009.07.015">CrossRef
    39. Rao RS, Karthika RU, Singh SP, Shashikala P, Kanungo R, Jayachandran S, Prashanth K: Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. / Indian J Med Microbiol 2008, 26:333-37. CrossRef
    40. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W: Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. / Antimicrob Agents Chemother 2000, 44:3357-363. CrossRef
    41. Wang Q, Sun FJ, Liu Y, Xiong LR, Xie LL, Xia PY: Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. / Antimicrob Agents Chemother 2010, 54:2707-711. CrossRef
    42. Bjarnsholt T, Kirketerp-Moller K, Jensen PO, Madsen KG, Phipps R, Krogfelt K, Hoiby N, Givskov M: Why chronic wounds will not heal: a novel hypothesis. / Wound Repair Regen 2008, 16:2-0. j.1524-475X.2007.00283.x">CrossRef
    43. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/13/47/prepub
  • 作者单位:Carlos J Sanchez Jr (1)
    Katrin Mende (2) (3)
    Miriam L Beckius (4)
    Kevin S Akers (1) (3)
    Desiree R Romano (1)
    Joseph C Wenke (1)
    Clinton K Murray (3)

    1. Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Ft. Sam Houston, San Antonio, TX, USA
    2. Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
    3. Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, Ft. Sam Houston, San Antonio, TX, USA
    4. Department of Clinical Investigation, San Antonio Military, Medical Center, Ft. Sam Houston, San Antonio, TX, USA
文摘
Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR) species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC) from 2004-011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA) (n=23), Acinetobacter baumannii (n=53), Pseudomonas aeruginosa (n=36), Klebsiella pneumoniae (n=54), and Escherichia coli (n=39), were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM). Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4%) were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro. Conclusions This study is the first to evaluate biofilm formation in a large collection of infecting clinical isolates representing diverse types of infections. Our results demonstrate: (1) biofilm formation is a heterogeneous property amongst clinical strains which is associated with certain clonal types, (2) biofilm forming strains are more frequently isolated from non-fluid tissues, in particular bone and soft tissues, (3) MDR pathogens are more often biofilm formers, and (4) strains from patients with persistent infections are positive for biofilm formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700