SUMO1 depletion prevents lipid droplet accumulation and HCV replication
详细信息    查看全文
  • 作者:Abdellah Akil ; Ghaith Wedeh ; Mohammad Zahid Mustafa
  • 关键词:HCV ; SUMO1 ; Lipid droplets
  • 刊名:Archives of Virology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:161
  • 期:1
  • 页码:141-148
  • 全文大小:2,152 KB
  • 参考文献:1.El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273PubMed PubMedCentral CrossRef
    2.Bartenschlager R, Penin F, Lohmann V, André P (2011) Assembly of infectious hepatitis C virus particles. Trends Microbiol 19:95–103PubMed CrossRef
    3.Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463PubMed CrossRef
    4.Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, Haselman U, Santarella-Mellwig R, Habermann A, Hoppe S, Kallis S et al (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8(12):e1003056PubMed PubMedCentral CrossRef
    5.Ferraris P, Blanchard E, Roingeard P (2010) Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 9:2230–2237CrossRef
    6.Jacobson IM et al (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364:2405–2416PubMed CrossRef
    7.Poordad F et al (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364:1195–1206PubMed PubMedCentral CrossRef
    8.Singal AG, Volk M, Jensen D et al (2010) A sustained viral response is associated with reduced liver related morbidity and mortality in patients with hepatitis C virus. Clin Gastroenterol Hepatol 8:280–288PubMed CrossRef
    9.Gane EJ et al (2013) Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N Engl J Med 368:34–44PubMed CrossRef
    10.Afdhal N et al (2014) Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N Engl J Med 370:1889–1898PubMed CrossRef
    11.Casey LC, Lee WM (2013) Hepatitis C virus therapy update. Curr Opin Gastroenterol 29(3):243–249PubMed
    12.Poveda E, Wyles DL, Mena A, Pedreira JD, Castro-Iglesias A, Cachay E (2014) Update on hepatitis C virus resistance to direct-acting antiviral agents. Antiviral Res 108:181–191PubMed CrossRef
    13.Paolucci S, Fiorina L, Mariani B, Gulminetti R, Novati S, Barbarini G, Bruno R, Baldanti F (2014) Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients. Virol J 17:355–362
    14.Halfon P, Locarnini S (2011) Hepatitis C virus resistance to protease inhibitors. J Hepatol 55:192–206PubMed CrossRef
    15.Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097PubMed CrossRef
    16.Negro F (2009) Correction of insulin resistance in chronic hepatitis C patients not responding to the standard of care: more questions than answers. J Hepatol 50:1271–1282PubMed CrossRef
    17.Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, Gillet L, Roingeard P (2010) Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 67:3151–3161PubMed CrossRef
    18.Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci 94:1200–1205PubMed PubMedCentral CrossRef
    19.Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 8:687–714CrossRef
    20.Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, Kim JB (2014) PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol 34:926–938PubMed PubMedCentral CrossRef
    21.Yang FM, Pan CT, Tsai HM, Chiu TW, Wu ML, Hu MC (2009) Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS J 276:425–436PubMed CrossRef
    22.Talamillo Ana, Martín David, Hjerpe Roland, Sánchez Jonatan, Barrio Rosa (2010) SUMO and ubiquitin modifications during steroid hormone synthesis and function. Biochem Soc Trans 38:54–59PubMed CrossRef
    23.Liu B, Wang T, Mei W, Li D, Cai R, Zuo Y, Cheng J (2014) Small ubiquitin-like modifier (SUMO) protein-specific protease 1 de-SUMOylates Sharp-1 protein and controls adipocyte differentiation. J Biol Chem 289:22358–22364PubMed PubMedCentral CrossRef
    24.Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107PubMed CrossRef
    25.Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872PubMed CrossRef
    26.Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871PubMed PubMedCentral CrossRef
    27.Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1201–1212CrossRef
    28.Chang P-C, Kung H-J (2014) SUMO and KSHV replication Kaposi’s sarcoma-associated herpesvirus. Cancers 6:1905–1924PubMed PubMedCentral CrossRef
    29.Santos A, Chacon J, Rosas-Acosta G (2013) Influenza A virus multiplication and the cellular SUMOylation system. Viral Replication 953:1055–1062
    30.Kato T, Date T, Murayama A, Morikawa K, Akazawa D, Wakita T (2006) Cell culture and infection system for hepatitis C virus. Nat Protoc 1:2334–2339PubMed CrossRef
    31.Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, Gillet L, Roingeard P (2010) Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 67:3151–3161PubMed CrossRef
    32.Pal S, Santos A, Rosas JM, Ortiz-Guzman J, Rosas-Acosta G (2011) Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 158(1–2):12–27PubMed CrossRef
    33.Dunphy PS, Luo T, McBride JW (2014) Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 82:4154–4168PubMed PubMedCentral CrossRef
    34.Everett RD, Boutell C, Hale BG (2013) Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411PubMed CrossRef
    35.Herker E, Ott M (2012) Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem 287:2280–2287PubMed PubMedCentral CrossRef
    36.Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P, Smolarsky M, Funaro A, Malavasi F, Larrey D, Coste J, Fabre JM, Sa-Cunha A, Maurel P (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419PubMed CrossRef
  • 作者单位:Abdellah Akil (1) (2) (3)
    Ghaith Wedeh (2)
    Mohammad Zahid Mustafa (1) (2) (4)
    Ama Gassama-Diagne (1)

    1. INSERM, UMR-S 785, 94800, Villejuif, France
    2. Univ Paris-Sud, 91400, Orsay, France
    3. Faculty of Science, UFR Biochemistry-Immunology, Univ Mohammed V, Rabat-Agdal, Morocco
    4. Centre for Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan, Quetta, Pakistan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Virology
    Medical Microbiology
    Infectious Diseases
  • 出版者:Springer Wien
  • ISSN:1432-8798
文摘
Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700