Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity
详细信息    查看全文
  • 作者:J. Gavin Daigle ; Karthik Krishnamurthy ; Nandini Ramesh ; Ian Casci…
  • 关键词:ALS ; FUS ; TDP ; 43 ; Pur ; alpha ; Stress granules ; RNA ; binding proteins ; Primary motor neurons ; Motor neuron diseases ; Neurodegeneration ; C9orf72 ; Amyotrophic lateral sclerosis
  • 刊名:Acta Neuropathologica
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:131
  • 期:4
  • 页码:605-620
  • 全文大小:4,743 KB
  • 参考文献:1.Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436. doi:10.​1038/​nrm2694 CrossRef PubMed
    2.Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870. doi:10.​1016/​j.​bbagrm.​2014.​11.​009 CrossRef PubMed
    3.Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, Kordasiewicz HB, McAlonis-Downes M, Platoshyn O, Parone PA et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110:E736–E745. doi:10.​1073/​pnas.​1222809110 CrossRef PubMed PubMedCentral
    4.Ash PE, Vanderweyde TE, Youmans KL, Apicco DJ, Wolozin B (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58. doi:10.​1016/​j.​brainres.​2014.​05.​052 CrossRef PubMed PubMedCentral
    5.Ayala YM, Pagani F, Baralle FE (2006) TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett 580:1339–1344. doi:10.​1016/​j.​febslet.​2006.​01.​052 CrossRef PubMed
    6.Barmada SJ, Ju S, Arjun A, Batarse A, Archbold HC, Peisach D, Li X, Zhang Y, Tank EM, Qiu H et al (2015) Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proc Natl Acad Sci USA 112:7821–7826. doi:10.​1073/​pnas.​1509744112 CrossRef PubMed PubMedCentral
    7.Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649. doi:10.​1523/​JNEUROSCI.​4988-09.​2010 CrossRef PubMed PubMedCentral
    8.Baron DM, Kaushansky LJ, Ward CL, Sama RR, Chian RJ, Boggio KJ, Quaresma AJ, Nickerson JA, Bosco DA (2013) Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegener 8:30. doi:10.​1186/​1750-1326-8-30 CrossRef PubMed PubMedCentral
    9.Belzil VV, Gendron TF, Petrucelli L (2013) RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 56:406–419. doi:10.​1016/​j.​mcn.​2012.​12.​006 CrossRef PubMed
    10.Belzil VV, St-Onge J, Daoud H, Desjarlais A, Bouchard JP, Dupre N, Camu W, Dion PA, Rouleau GA (2011) Identification of a FUS splicing mutation in a large family with amyotrophic lateral sclerosis. J Hum Genet 56:247–249. doi:10.​1038/​jhg.​2010.​162 CrossRef PubMed
    11.Bergemann AD, Johnson EM (1992) The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication. Mol Cell Biol 12:1257–1265CrossRef PubMed PubMedCentral
    12.Bergemann AD, Ma ZW, Johnson EM (1992) Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein. Mol Cell Biol 12:5673–5682CrossRef PubMed PubMedCentral
    13.Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, Sapp P, McKenna-Yasek D, Brown RH Jr, Hayward LJ (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19:4160–4175. doi:10.​1093/​hmg/​ddq335 CrossRef PubMed PubMedCentral
    14.Boyd JD, Lee-Armandt JP, Feiler MS, Zaarur N, Liu M, Kraemer B, Concannon JB, Ebata A, Wolozin B, Glicksman MA (2014) A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. J Biomol Screen 19:44–56. doi:10.​1177/​1087057113501553​ CrossRef PubMed PubMedCentral
    15.Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030. doi:10.​4161/​15476286.​2014.​972208 CrossRef PubMed PubMedCentral
    16.Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474. doi:10.​1016/​j.​cell.​2013.​05.​037 CrossRef PubMed PubMedCentral
    17.Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343. doi:10.​1074/​jbc.​M104236200 CrossRef PubMed
    18.Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7:420–429 (pii:12205) CrossRef PubMed
    19.Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280:37572–37584. doi:10.​1074/​jbc.​M505557200 CrossRef PubMed
    20.Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784. doi:10.​1093/​emboj/​20.​7.​1774 CrossRef PubMed PubMedCentral
    21.Colombrita C, Onesto E, Megiorni F, Pizzuti A, Baralle FE, Buratti E, Silani V, Ratti A (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647. doi:10.​1074/​jbc.​M111.​333450 CrossRef PubMed PubMedCentral
    22.Cooper-Knock J, Bury JJ, Heath PR, Wyles M, Higginbottom A, Gelsthorpe C, Highley JR, Hautbergue G, Rattray M, Kirby J et al (2015) C9ORF72 GGGGCC expanded repeats produce splicing dysregulation which correlates with disease severity in amyotrophic lateral sclerosis. PLoS ONE 10:e0127376. doi:10.​1371/​journal.​pone.​0127376 CrossRef PubMed PubMedCentral
    23.Cziko AM, McCann CT, Howlett IC, Barbee SA, Duncan RP, Luedemann R, Zarnescu D, Zinsmaier KE, Parker RR, Ramaswami M (2009) Genetic modifiers of dFMR1 encode RNA granule components in Drosophila. Genetics 182:1051–1060. doi:10.​1534/​genetics.​109.​103234 CrossRef PubMed PubMedCentral
    24.D’Alton S, Altshuler M, Lewis J (2015) Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA 21:1419–1432. doi:10.​1261/​rna.​047647.​114 CrossRef PubMed
    25.Da CS, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21:904–919. doi:10.​1016/​j.​conb.​2011.​05.​029 CrossRef
    26.Daigle JG, Lanson NA, Jr., Smith RB, Casci I, Maltare A, Monaghan J, Nichols CD, Kryndushkin D, Shewmaker F, Pandey UB (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet. doi:10.​1093/​hmg/​dds526
    27.Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G (2012) TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res 1462:16–25. doi:10.​1016/​j.​brainres.​2012.​02.​032 CrossRef PubMed PubMedCentral
    28.Di Salvio M, Piccinni V, Gerbino V, Mantoni F, Camerini S, Lenzi J, Rosa A, Chellini L, Loreni F, Carri MT et al (2015) Pur-alpha functionally interacts with FUS carrying ALS-associated mutations. Cell Death Dis 6:e1943. doi:10.​1038/​cddis.​2015.​295 CrossRef PubMed PubMedCentral
    29.Dini Modigliani S, Morlando M, Errichelli L, Sabatelli M, Bozzoni I (2014) An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA-FUS regulatory circuitry. Nat Commun 5:4335. doi:10.​1038/​ncomms5335 CrossRef PubMed
    30.Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857. doi:10.​1038/​emboj.​2010.​143 CrossRef PubMed PubMedCentral
    31.Figley MD, Bieri G, Kolaitis RM, Taylor JP, Gitler AD (2014) Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 34:8083–8097. doi:10.​1523/​JNEUROSCI.​0543-14.​2014 CrossRef PubMed PubMedCentral
    32.Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE (2015) Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet 24:3529–3544. doi:10.​1093/​hmg/​ddv104 CrossRef PubMed PubMedCentral
    33.Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120. doi:10.​1021/​pr901076y CrossRef PubMed PubMedCentral
    34.Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398. doi:10.​1091/​mbc.​E04-08-0715 CrossRef PubMed PubMedCentral
    35.Hackman P, Sarparanta J, Lehtinen S, Vihola A, Evila A, Jonson PH, Luque H, Kere J, Screen M, Chinnery PF et al (2013) Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73:500–509. doi:10.​1002/​ana.​23831 CrossRef PubMed
    36.Hunt D, Leventer RJ, Simons C, Taft R, Swoboda KJ, Gawne-Cain M, DDD study, Magee AC, Turnpenny PD, Baralle D (2014) Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability. J Med Genet 51:806–813. doi:10.​1136/​jmedgenet-2014-102798 CrossRef PubMed PubMedCentral
    37.Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, Liu H, Feng Y, Warren ST (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55:556–564. doi:10.​1016/​j.​neuron.​2007.​07.​020 CrossRef PubMed PubMedCentral
    38.Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K, Warren ST (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39:739–747CrossRef PubMed
    39.Johnson EM (2003) The Pur protein family: clues to function from recent studies on cancer and AIDS. Anticancer Res 23:2093–2100PubMed
    40.Johnson EM, Chen PL, Krachmarov CP, Barr SM, Kanovsky M, Ma ZW, Lee WH (1995) Association of human Pur alpha with the retinoblastoma protein, Rb, regulates binding to the single-stranded DNA Pur alpha recognition element. J Biol Chem 270:24352–24360CrossRef PubMed
    41.Johnson EM, Daniel DC, Gordon J (2013) The pur protein family: genetic and structural features in development and disease. J Cell Physiol 228:930–937. doi:10.​1002/​jcp.​24237 CrossRef PubMed PubMedCentral
    42.Johnson EM, Kinoshita Y, Weinreb DB, Wortman MJ, Simon R, Khalili K, Winckler B, Gordon J (2006) Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83:929–943. doi:10.​1002/​jnr.​20806 CrossRef PubMed
    43.Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442CrossRef PubMed PubMedCentral
    44.Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, Meier E, Johnson EM, Daniel DC, Kinoshita Y et al (2003) Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol 23:6857–6875CrossRef PubMed PubMedCentral
    45.Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. doi:10.​1038/​nature11922 CrossRef PubMed PubMedCentral
    46.Kim HJ, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, Lee VM, Finkbeiner S, Gitler AD, Bonini NM (2014) Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46:152–160. doi:10.​1038/​ng.​2853 CrossRef PubMed PubMedCentral
    47.King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi:10.​1016/​j.​brainres.​2012.​01.​016 CrossRef PubMed PubMedCentral
    48.Klar J, Sobol M, Melberg A, Mabert K, Ameur A, Johansson AC, Feuk L, Entesarian M, Orlen H, Casar-Borota O et al (2013) Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 34:572–577. doi:10.​1002/​humu.​22282 PubMed
    49.Kwiatkowski TJ Jr, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi:10.​1126/​science.​1166066 CrossRef PubMed
    50.Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. doi:10.​1093/​hmg/​ddq137 CrossRef PubMed PubMedCentral
    51.Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497. doi:10.​1038/​nn.​3230 CrossRef PubMed PubMedCentral
    52.Lalani SR, Zhang J, Schaaf CP, Brown CW, Magoulas P, Tsai AC, El-Gharbawy A, Wierenga KJ, Bartholomew D, Fong CT et al (2014) Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome. Am J Hum Genet 95:579–583. doi:10.​1016/​j.​ajhg.​2014.​09.​014 CrossRef PubMed PubMedCentral
    53.Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30:2501–2502. doi:10.​1093/​bioinformatics/​btu310 CrossRef PubMed PubMedCentral
    54.Lanson NA Jr, Maltare A, King H, Smith R, Kim JH, Taylor JP, Lloyd TE, Pandey UB (2011) A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20:2510–2523. doi:10.​1093/​hmg/​ddr150 CrossRef PubMed PubMedCentral
    55.Lanson NA Jr, Pandey UB (2012) FUS-related proteinopathies: lessons from animal models. Brain Res. doi:10.​1016/​j.​brainres.​2012.​01.​039 PubMed
    56.Liu H, Johnson EM (2002) Distinct proteins encoded by alternative transcripts of the PURG gene, located contrapodal to WRN on chromosome 8, determined by differential termination/polyadenylation. Nucleic Acids Res 30:2417–2426CrossRef PubMed PubMedCentral
    57.Lloyd RE (2013) Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA 4:317–331. doi:10.​1002/​wrna.​1162 CrossRef PubMed PubMedCentral
    58.Matus S, Bosco DA, Hetz C (2014) Autophagy meets fused in sarcoma-positive stress granules. Neurobiol Aging 35:2832–2835. doi:10.​1016/​j.​neurobiolaging.​2014.​08.​019 CrossRef PubMed PubMedCentral
    59.Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I (2012) FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J 31:4502–4510. doi:10.​1038/​emboj.​2012.​319 CrossRef PubMed PubMedCentral
    60.Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, Suzuki N (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 285:608–619. doi:10.​1074/​jbc.​M109.​022012 CrossRef PubMed PubMedCentral
    61.Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, Sato TA, Anzai K (2002) Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem 277:37804–37810. doi:10.​1074/​jbc.​M203608200 CrossRef PubMed
    62.Orozco D, Tahirovic S, Rentzsch K, Schwenk BM, Haass C, Edbauer D (2012) Loss of fused in sarcoma (FUS) promotes pathological Tau splicing. EMBO Rep 13:759–764. doi:10.​1038/​embor.​2012.​90 CrossRef PubMed PubMedCentral
    63.Polymenidou M, Lagier-Tourenne C, Hutt KR, Bennett CF, Cleveland DW, Yeo GW (2012) Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res 1462:3–15. doi:10.​1016/​j.​brainres.​2012.​02.​059 CrossRef PubMed PubMedCentral
    64.Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468. doi:10.​1038/​nn.​2779 CrossRef PubMed PubMedCentral
    65.Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, Barmada SJ, Finkbeiner S, Lui H, Carlton CE et al (2014) ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest 124:981–999. doi:10.​1172/​JCI72723 CrossRef PubMed PubMedCentral
    66.Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736. doi:10.​1016/​j.​cell.​2013.​07.​038 CrossRef PubMed
    67.Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi:10.​1038/​nn.​3584 CrossRef PubMed PubMedCentral
    68.Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35:2822–2831. doi:10.​1016/​j.​neurobiolaging.​2014.​07.​026 CrossRef PubMed
    69.Scaramuzzino C, Casci I, Parodi S, Lievens PM, Polanco MJ, Milioto C, Chivet M, Monaghan J, Mishra A, Badders N et al (2015) Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron 85:88–100. doi:10.​1016/​j.​neuron.​2014.​12.​031 CrossRef PubMed PubMedCentral
    70.Shorter J, Taylor JP (2013) Disease mutations in the prion-like domains of hnRNPA1 and hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly. Rare Dis 1:e25200. doi:10.​4161/​rdis.​25200 CrossRef PubMed PubMedCentral
    71.Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi:10.​1126/​science.​1165942 CrossRef PubMed PubMedCentral
    72.Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, Urwin H, Manser C, Miller CC, Hortobagyi T et al (2013) ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet 22:2676–2688. doi:10.​1093/​hmg/​ddt117 CrossRef PubMed PubMedCentral
    73.Vanderweyde T, Youmans K, Liu-Yesucevitz L, Wolozin B (2013) Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology 59:524–533. doi:10.​1159/​000354170 CrossRef PubMed
    74.White MK, Johnson EM, Khalili K (2009) Multiple roles for Puralpha in cellular and viral regulation. Cell Cycle 8:1–7PubMed PubMedCentral
    75.Wolozin B (2014) Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov Med 17:47–52PubMed PubMedCentral
    76.Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, Li H, Hales CM, Gearing M, Wingo TS et al (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci USA 110:7778–7783. doi:10.​1073/​pnas.​1219643110 CrossRef PubMed PubMedCentral
    77.Zeng LH, Okamura K, Tanaka H, Miki N, Kuo CH (2005) Concomitant translocation of Puralpha with its binding proteins (PurBPs) from nuclei to cytoplasm during neuronal development. Neurosci Res 51:105–109. doi:10.​1016/​j.​neures.​2004.​09.​009 CrossRef PubMed
  • 作者单位:J. Gavin Daigle (1) (2)
    Karthik Krishnamurthy (3)
    Nandini Ramesh (2) (4)
    Ian Casci (2) (4)
    John Monaghan (2)
    Kevin McAvoy (3)
    Earl W. Godfrey (5)
    Dianne C. Daniel (6)
    Edward M. Johnson (6)
    Zachary Monahan (7)
    Frank Shewmaker (7)
    Piera Pasinelli (3)
    Udai Bhan Pandey (2) (4) (8)

    1. Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
    2. Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
    3. Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
    4. Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
    5. Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
    6. Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
    7. Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
    8. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Pathology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0533
文摘
Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700