Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08
详细信息    查看全文
  • 作者:Xiao-yan Zhang (1)
    Yong Peng (2)
    Zhong-rui Su (1)
    Qi-he Chen (1)
    Hui Ruan (1)
    Guo-qing He (1)
  • 关键词:Phytosterol ; Mycobacterium neoaurum ZJUVN ; 08 ; Androstenedione ; Hydroxypropyl ; β ; cyclodextrin ; Q815
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:14
  • 期:2
  • 页码:132-143
  • 全文大小:423KB
  • 参考文献:1. Cabral, J.M.S., Aires-Barros, M.R., Pinheiro, H., Prazeres, D.M.F., 1997. Biotransformation in organic media by enzymes and whole cells. / J. Biotechnol., 59(1-):133-43. [doi:10.1016/s0168-1656(97)00176-4] CrossRef
    2. Carvalho, F., Marques, M.P.C., de Carvalho, C.C.C.R., Cabral, J.M.S., Fernandes, P., 2009. Sitosterol bioconversion with resting cells in liquid polymer based systems. / Biores. Technol., 100(17):4050-053. [doi:10.1016/j.biortech.2009.03.044] CrossRef
    3. Chen, Q.H., He, G.Q., Mokhtar, A.M.A., 2002. Optimization of medium composition for the production of elastase by / Bacillus sp. EL31410 with response surface methodology. / Enzyme Microb. Technol., 30(5):667-72. [doi:10.1016/s0141-0229(02)00028-5] CrossRef
    4. Chen, Q.H., Fu, M.L., Liu, J., Zhang, H.F., He, G.Q., Ruan, H., 2008. Optimization of ultrasonic-assisted extraction (UAE) of betulin from white irch bark using response surface methodology. / Ultrason. Sonochem., 16(5):599-04. [doi:10.1016/j.ultsonch.2008.11.009] CrossRef
    5. Cruz, A., Fernandes, P., Cabral, J.M.S., Pinheiro, H.M., 2001. Whole-cell bioconversion of β-sitosterol in aqueous-oganic two-phase systems. / J. Mol. Catal. B: Enzym., 11(4-):579-85. [doi:10.1016/s1381-1177(00)00047-3] CrossRef
    6. de Brabandere, V.I., Thienpont, L.M., Stockl, D., de Leenheer, A.P., 1997. 13C-NMR and mass spectral data of steroids with a 17,17-dialkyl-l8-nor-l3(14)-ene substructure. / J. Lipid Res., 38(4):780-89.
    7. Dogra, N., Qazi, G.N., 2001. Steroid biotransformation by different strains of / Micrococcus sp. / Folia Microiol., 46(1): 17-0. [doi:10.1007/BF02825877] CrossRef
    8. Fernandes, P., Cabral, J.M.S., 2007. Phytosterols: applications and recovery methods. / Biores. Technol., 98(12):2335-350. [doi:10.1016/j.biortech.2006.10.006] CrossRef
    9. Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H.M., Cabral, J.M.S., 2003. Microbial conversion of steroid compounds: recent developments. / Enzyme Microb. Technol., 32(6): 688-05. [doi:10.1016/s0141-0229(03)00029-2] CrossRef
    10. Ghosh, D., Hallenbeck, P.C., 2010. Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain / Escherichia coli DJT135. / Bioresour. Technol., 101(6):1820-825. [doi:10.1016/j/biortech.2009.10.020] CrossRef
    11. Goswami, D., Sen, R., Basu, J.K., De, S., 2009. Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology. / Bioresour. Technol., 100(18):4067-073. [doi:10.1016/j/biortech.2008.11.040] CrossRef
    12. Hegazy, M.E.F., Gamal-Eldeen, A.M., Ei-Halawany, A.M., Mohamed, A.E.H.H., Paré, P.W., 2012. Steroidal metabolites transformed by / Marchantia polymorpha cultures block breast cancer estrogen biosynthesis. / Cell Biochem. / Biophys., 63(1):85-6. [doi:10.1007/s12013-012-9343-4] CrossRef
    13. Hesselink, P.G.M., Vliet, S.V., Vries, H.D., Witholt, B., 1989. Optimization of steroid side chain cleavage by / Mycobacterium sp. in the presence of cyclodextrins. / Enzyme Microb. Technol., 11(7):398-04. [doi:10.1016/0141-0229(89)90133-6] CrossRef
    14. Huang, C.L., Chen, Y.R., Liu, W.H., 2006. Production of androstenones from phytosterol by mutants of / Mycobacterium sp. / Enzyme Microb. Technol., 39(2):296-00. [doi:10.1016/j.enzmictec.2005.10.017] CrossRef
    15. Kim, P.Y., Pollard, D.J., Woodley, J.M., 2007. Substrate supply for effective biocatalysis. / Biotechnol. Prog., 23(1):74-2. [doi:10.1021/bp060314b] CrossRef
    16. Kutney, J.P., Milanova, R.K., Vassilev, C.D., Stefanov, S.S., Nedelcheva, N.V., 2000. Process for the Microbial Conversion of Phytosterol to Androstenedione and Androstadienedione. US Patent 6071714.
    17. Lin, Y.L., Song, X., Fu, J., Lin, J.Q., Qu, Y.B., 2009. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by / Fusarium moniliforme sheld. / Bioresour. Technol., 100(5):1864-867. [doi:10.1016/j/biortech.2008.09.040] CrossRef
    18. Liu, J., Fu, M.L., Chen, Q.H., 2010. Biotransformation optimization of betulin into betulinic acid production catalysed by cultured / Armillaria luteo-virens sacc ZJUQH 100-6 cells. / J. Appl. Microbiol., 110(1):90-7. [doi:10.1111/j.1365-2672.2010.04857.x] CrossRef
    19. Liu, Z.Q., Zhang, J.F., Zheng, Y.G., Shen, Y.C., 2007. Improvement of astaxanthin production by a newly isolated / Phaffia rhodozyma mutant with low-energy ion beam implantation. / J. Appl. Microbiol., 104(3):861-72. [doi:10.1111/j.1365-2672.2007.03603.x] CrossRef
    20. Loftsson, T., Brewster, M.E., 1996. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. / J. Pharm. Sci.-US, 85(10):1017-025. [doi: 10.1021/js950534b] CrossRef
    21. Ma, Y.H., Wang, M., Fan, Z., Shen, Y.B., Zhang, L.T., 2009. The influence of host-guest inclusion complex formation on the biotransformation of cortisone acetate Δ1-dehydrogenation. / J. Steroid Biochem. Mol. Biol., 117(4):146-51. [doi:10.1016/j.jsbmb.2009.08.007] CrossRef
    22. Malaviya, A., Gomes, J., 2008. Androstenedione production by biotransformation of phytosterols. / Biores. Technol., 99(15):6725-737. [doi:10.1016/j.biortech.2008.01.039] CrossRef
    23. Manosroi, A., Saowakhon, S., Manosroi, J., 2008. Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. / J. Steroid Biochem., 108(1-):132-36. [doi:10.1016/j.jsbmb.2007.05.032]
    24. Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiment. Wiley-Interscience Publication, New York, p.219-64.
    25. Nalluri, B.N., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G., 2005. Inclusion complexation and dissolution properties of nimesulide. / J. Incl. Phenom. Macrocycl. Chem., 53(1-):103-10. [doi:10.1007/s10847-005-1676-9] CrossRef
    26. Pérez, C., Falero, A., Duc, H.L., Balcinde, Y., Hung, B.R., 2006. A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. / J. Ind. Microbiol. Biotechnol., 148(8):719-23. [doi:10.1007/s10295-006-0148-6] CrossRef
    27. Rodina, N.V., Molchanova, M.A., Voishvillo, N.E., Andryushina, V.A., Stytsenko, T.S., 2008. Conversion of phytosterols into androstenedione by / Mycobacterium neoaurum. / Appl. Biochem. Microbiol., 44(1):48-4. [doi:10.1134/S0003683808010080] CrossRef
    28. Rogli?, U., ?nidar?i?-Plazl, P., Plazl, L., 2005. The influence of β-cyclodextrin on the kinetics of progesterone transformation by / Rhizopus nigricans. Biocatal. Biotransfor., 23(5):299-05. [doi:10.1080/10242420500175929] CrossRef
    29. Rogli?, U., Plazl, L., ?nidar?i?-Plazl, P., 2007. Batch and continuous transformation of progesterone by / Rhizopus nigricans pellets in the presence of β-cyclodextrin. / Biocatal. Biotransfor., 25(1):16-3. [doi:10.1080/10242420601060954] CrossRef
    30. Schimid, A., Kollmer, A., Mathys, R.G., Witholt, B., 1998. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. / Extremophiles, 2(3):249-56. [doi:10.1007/s007920050067] CrossRef
    31. Senanayake, S.P.J.N., Shahidi, F., 2002. Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. / Food Chem., 77(1):115-23. [doi:10.1016/s0308-8146(01)00311-9] CrossRef
    32. Shen, Y.B., Wang, M., Zhang, L.T., Ma, Y.H., Ma, B., Zheng, Y., Liu, H., Luo, J.M., 2011. Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transformation / Arthrobacter simplex and / Mycobacterium sp. / Appl. Microbiol. Biotechnol., 90(6): 1995-003. [doi:10.1007/s00253-011-3214-6] CrossRef
    33. Simon, L.M., László, K., Vértesi, A., Bagi, K., Szajáni, B., 1998. Stability of hydrolytic enzymes in water-organic solvent systems. / J. Mol. Catal. B: Enzym., 4(1-):41-5. [doi:10.1016/s1381-1177(97)00019-2] CrossRef
    34. Sripalakit, P., Wichai, U., Saraphanchotiwitthaya, A., 2006. Biotransformation of various natural sterols to androstenones by / Mycobacterium sp. and some steroid-converting microbial strains. / J. Mol. Catal. B: Enzym., 41(1-):49-4. [doi:10.1016/j.molcatb.2006.04.007] CrossRef
    35. Staebler, A., Cruz, A., van der Goot, W., Pinheiro, H.M., Cabral, J.M.S., Fernandes, P., 2004. Optimization of androstenedione production in an organic-aqueous two-liquid phase system. / J. Mol. Catal. B: Enzym., 29(1-):19-3. [doi:10.1016/j.molcatb.2004.01.013] CrossRef
    36. Stefan, A., Palazzo, G., Ceglie, A., Panzavolta, E., Hochkoeppler, A., 2002. Water-in-oil microemulsions to sustain long-term viability of microbial cells in organic solvents. / Biotechnol. Bioeng., 81(3):323-28. [doi:10.1002/bit.10476] CrossRef
    37. Stefanov, S., Yankov, D., Beschkov, V., 2006. Biotransformation of phytosterols to androstenedione in two phase water-oil systems. / Chem. Biochem. Eng. Q, 20(4): 421-27.
    38. Szejtli, J., 1998. Introduction and general overview of cyclodextrin chemistry. / Chem. Rev., 98(5):1743-754. [doi:10.1021/cr970022c] CrossRef
    39. Wang, Z.L., Zhao, F.S., Hao, X.Q., Chen, D.J., Li, D.T., 2004. Microbial transformation of hydrophobic compound in cloud point system. / J. Mol. Catal. B: Enzym., 27(4-): 147-53. [doi:10.1016/j.molcatb.2003.11.002] CrossRef
    40. Wang, Z.L., Zhao, F.S., Chen, D.J., Li, D.T., 2006. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of / Mycobacterium in cloud point system. / Process Biochem., 41(3):557-61. [doi:10.1016/j.procbio.2005.09.014] CrossRef
    41. Wei, W., Fan, S.Y., Wang, F.Q., Wei, D.Z., 2010. A new steroid-transformation strain of / Mycobacterium neoaurum and cloning of 3-ketosteroid 9α-hydroxylase in NwIB-01. / Appl. Biochem. Biotechnol., 162(5):1446-456. [doi:10.1007/s12010-010-8919-y] CrossRef
    42. Zhang, L.T., Wang, M., Shen, Y.B., Ma, Y.H., Luo, J.M., 2009. Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. / Appl. Biochem. Biotechnol., 159(3):642-54. [doi:10.1007/s12010-008-8499-2] CrossRef
  • 作者单位:Xiao-yan Zhang (1)
    Yong Peng (2)
    Zhong-rui Su (1)
    Qi-he Chen (1)
    Hui Ruan (1)
    Guo-qing He (1)

    1. Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
    2. Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
  • ISSN:1862-1783
文摘
Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700