Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment
详细信息    查看全文
  • 作者:Chao Liu ; Xian Zhang ; Zhi-ming Rao…
  • 关键词:Mycobacterium neoaurum ; Atmospheric and room temperature plasma (ARTP) ; Mutation breeding ; 4 ; Androstene ; 3 ; 17 ; dione (AD) ; 1 ; 4 ; Androstadiene ; 3 ; 17 ; dione (ADD) ; Q933 ; Mycobacterium neoaurum ; (ARTP) ; ; ; 4 ; 3 ; 17 ; (AD) ; ; 1 ; 4 ; 3 ; 17 ; (ADD)
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:16
  • 期:4
  • 页码:286-295
  • 全文大小:735 KB
  • 参考文献:Bensasson, C.S., Hanson, J.R., Le Huerou, Y., 1999. The microbiological hydroxylation of 3α,5-cycloandrostanes by Cephalosporium aphidicola. Phytochemistry, 52(7): 1279-282. [doi:10.1016/S0031-9422(99)00415-X]View Article PubMed
    Bhagwat, B., Duncan, E.J., 1998. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci. Hortic. (Amsterdam), 73(1):11-2. [doi:10.1016/S0304-4238(97)00141-6]View Article
    Biggs, C.B., Pyke, T.R., Wovcha, M.G., et al., 1977. Microbial Transformation of Steroids. US Patent 4062729.
    Bragin, E.Y., Shtratnikova, V.Y., Dovbnya, D.V., et al., 2013. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J. Steroid Biochem. Mol. Biol., 138:41-3. [doi:10.1016/j.jsbmb.2013.02.016]View Article PubMed
    Brugger, D., Krondorfer, I., Zahma, K., et al., 2014. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes. Biotechnol. J., 9(4):474-82. [doi:10.1002/biot.201300336]View Article PubMed Central PubMed
    Brzostek, A., Sliwinski, T., Rumijowska-Galewicz, A., et al., 2005. Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology, 151(7):2393-402. [doi:10.1099/mic.0.27953-0]View Article PubMed
    Choi, K.P., Murooka, Y., Molnár, I., 1995. Secretory overproduction of Arthrobacter simplex 3-ketosteroid Δ1-dehydrogenase by Streptomyces lividans with a multi- copy shuttle vector. Appl. Microbiol. Biotechnol., 43(6): 1044-049. [doi:10.1007/BF00166923]View Article PubMed
    Donova, M.V., Egorova, O.V., 2012. Microbial steroid transformations: current state and prospects. Appl. Microbiol. Biotechnol., 94(6):1423-447. [doi:10.1007/s00253-012-4078-0]View Article PubMed
    Dovbnya, D.V., Egorova, O.V., Donova, M.V., 2010. Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Steroids, 75(10):653-58. [doi:10.1016/j.steroids.2010.04.001]View Article PubMed
    Fernandes, P., Cruz, A., Angelova, B., et al., 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol., 32(6):688-05. [doi:10.1016/S0141-0229(03)00029-2]View Article
    Hua, X.F., Wang, J., Wu, Z.J., et al., 2010. A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem. Eng. J., 49(2):201-06. [doi:10.1016/j.bej.2009.12.014]View Article
    Huang, C.L., Chen, Y.R., Liu, W.H., 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol., 39(2):296-00. [doi:10.1016/j.enzmictec.2005.10.017]View Article
    Lee, C.Y., Liu, W.H., 1992. Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers. Appl. Microbiol. Biotechnol., 36(5):598-03. [doi:10.1007/BF00183235]PubMed
    Leitner, C., Volc, J., Haltrich, D., 2001. Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl. Environ. Microbiol., 67(8):3636-644. [doi:10.1128/AEM.67.8.3636-3644.2001]View Article PubMed Central PubMed
    Li, H.G., Luo, W., Wang, Q., et al., 2014. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl. Biochem. Biotechnol., 172(7):3330-341. [doi:10.1007/s12010-014-0765-x]View Article PubMed
    Nagasawa, M., Bae, M., Tamura, G., et al., 1969. Microbial transformation of sterols. Agric. Biol. Chem., 33(11): 1644-650. [doi:10.1271/bbb1961.33.1644]View Article
    Nicholson, W.L., 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol., 74(22):6832-838. [doi:10.1128/AEM.00881-08]View Article PubMed Central PubMed
    Shao, M.L., Rao, Z.M., Zhang, X., et al., 2014. Bioconversion of cholesterol to 4-cholesten-3-one by recombinant Bacillus subtilis expressing choM gene encoding cholesterol oxidase from Mycobacterium neoaurum JC-12. J. Chem. Technol. Biotechnol., in press. [doi:10.1002/jctb.4491]
    Shen, Y.B., Wang, M., Li, H.N., et al., 2012. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. J. Ind. Microbiol. Biotechnol., 39(9):1253-259. [doi:10.1007/s10295-012-1130-0]View Article PubMed
    Swizdor, A., Kolek, T., Panek, A., et al., 2012. Selective modifications of steroids performed by oxidative enzymes. Curr. Org. Chem., 16(21):2551-582. [doi:10.2174/138527212804004625]View Article
    Szentirmai, A., 1990. Microbial physiology of sidechain degradation of sterols. J. Ind. Microbiol., 6(2):101-15. [doi:10.1007/BF01576429]View Art
  • 作者单位:Chao Liu (1) (2)
    Xian Zhang (1) (2)
    Zhi-ming Rao (1) (2)
    Ming-long Shao (1) (2)
    Le-le Zhang (1) (2)
    Dan Wu (1) (2)
    Zheng-hong Xu (3)
    Hui Li (3)

    1. Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
    2. Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
    3. Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
Steroid medication is used extensively in clinical applications and comprises a large and vital part of the pharmaceutical industry. However, the difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene-3,17-dione (ADD) restricts the application of the microbial transformation of phytosterols in the industry. A novel atmospheric and room temperature plasma (ARTP) treatment, which employs helium as the working gas, was used to generate Mycobacterium neoaurum mutants producing large amounts of AD. After treatment of cultures with ARTP, four mutants were selected using a novel screening method with a color assay. Among the mutants, M. neoaurum ZADF-4 was considered the best candidate for industrial application. When the fermentation medium contained 15 g/L phytosterols and was cultivated on a rotary shaker at 160 r/min at 30°C for 7 d, (6.28±0.11) g/L of AD and (0.82±0.05) g/L of ADD were produced by the ZADF-4 mutant, compared with (4.83±0.13) g/L of AD and (2.34±0.06) g/L of ADD by the original strain, M. neoaurum ZAD. Compared with ZAD, the molar yield of AD increased from 48.3% to 60.3% in the ZADF-4 mutant. This result indicates that ZADF-4 may have potential for industrial production of AD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700