Biotransformation of 4-sec-butylphenol by Gram-positive bacteria of the genera Mycobacterium and Nocardia including modifications on the alkyl chain and the hydroxyl g
详细信息    查看全文
  • 作者:Veronika Hahn ; Katharina Sünwoldt…
  • 关键词:Degradation ; Environmental pollution ; Hydroxylation ; Glucoside ; Phenylalkane ; Alkylbenzene
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:97
  • 期:18
  • 页码:8329-8339
  • 全文大小:340KB
  • 参考文献:1. Asha S, Vidyavathi M (2009) / Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv 27:16-9 CrossRef
    2. Balaam JL, Chan-Man Y, Roberts PH, Thomas KV (2009) Identification of nonregulated pollutants in north sea-produced water discharges. Environ Toxicol Chem 28:1159-167 CrossRef
    3. Benijts T, Lambert W, de Leenheer A (2004) Analysis of multiple endocrine disruptors in environmental waters via wide-spectrum solid-phase extraction and dual-polarity ionization LC-ion trap-MS/MS. Anal Chem 76:704-11 CrossRef
    4. Blackburn MA, Waldock MJ (1995) Concentrations of alkylphenols in rivers and estuaries in England and Wales. Water Res 29:1623-629 CrossRef
    5. Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086-091
    6. Breitmaier E, Voelter W (1990) Carbon-13 NMR spectroscopy: high-resolution methods and applications in organic chemistry and biochemistry, 3rd edn. Wiley-VCH, Weinheim, Germany
    7. Breitmaier E, Voelter W, Jung G, T?nzer C (1971) Konfigurations-, Konformations- und Substituenteneinflüsse auf die 13C-chemischen Verschiebungen von Glykosiden. Chem Ber 104:1147-154 CrossRef
    8. Cameron RG, Manthey JA, Baker RA, Grohmann K (2001) Purification and characterization of a β-glucosidase from / Citrus sinensis var. Valencia fruit tissue. J Agric Food Chem 49:4457-462 CrossRef
    9. Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205-15 CrossRef
    10. Cerniglia CE, Campbell WL, Freeman JP, Evans FE (1989) Identification of a novel metabolite in phenanthrene metabolism by the fungus / Cunninghamella elegans. Appl Environ Microbiol 55:2275-279
    11. Cerniglia CE, Freeman JP, Mitchum RK (1982) Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol 43:1070-075
    12. Cerniglia CE, Freeman JP, White GL, Heflich RH, Miller DW (1985) Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1-nitropyrene. Appl Environ Microbiol 50:649-55
    13. Colborn T, Saal FSV, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378-84 CrossRef
    14. De Boer TD, Backer HJ (1956) Diazomethane. In: Leonard NJ (ed) Organic synthesis, vol 36. Wiley, New York, pp 14-6
    15. Dec J, Bollag JM (1988) Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid. Soil Sci Soc Am J 52:1366-371 CrossRef
    16. Drijfhout FP, Fraaije MW, Jongejan H, Van Berkel WJH, Franssen MCR (1998) Enantioselective hydroxylation of 4-alkylphenols by vanillyl alcohol oxidase. Biotechnol Bioeng 59:171-77 CrossRef
    17. Fraaije MW, van Berkel WJH (1997) Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase—evidence for formation of a / p-quinone methide intermediate. J Biol Chem 272:18111-8116 CrossRef
    18. Fraaije MW, van den Heuvel RHH, Roelofs JCAA, Van Berkel WJH (1998) Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. Eur J Biochem 253:712-19 CrossRef
    19. Friebolin H (1992) Ein- und zweidimensionale NMR-Spektroskopie. Eine Einführung. 2. Auflage, Wiley-VCH, Weinheim, Germany
    20. Fritsche W (1968) Effect of carbon sources on growth rate protein content and enzyme pattern in / Candida guilliermondii. Z Allg Mikrobiol 8:91-9 CrossRef
    21. Fulton Z, McAlister A, Wilce MCJ, Brammananth R, Zaker-Tabrizi L, Perugini MA, Bottomley SP, Coppel RL, Crellin PK, Rossjohn J, Beddoe T (2008) Crystal structure of a UDP-glucose-specific glycosyltransferase from a / Mycobacterium species. J Biol Chem 283:27881-7890 CrossRef
    22. Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Purification and characterization of an intracellular ?-glucosidase from / Botrytis cinerea. Enzyme Microb Technol 78:900-06 CrossRef
    23. Hahn V, Sünwoldt K, Mikolasch A, Schauer F (2013) Two different primary oxidation mechanisms during biotransformation of thymol by Gram-positive bacteria of the genera / Nocardia and / Mycobacterium. Appl Microbiol Biotechnol 97:1289-297 CrossRef
    24. Hammer E, Schoefer L, Sch?fer A, Hundt K, Schauer F (2001) Formation of glucoside conjugates during biotransformation of dibenzofuran by / Penicillium canescens SBUG-M 1139. Appl Microbiol Biotechnol 57:390-94 CrossRef
    25. Herter S, Mikolasch A, Schauer F (2012) Identification of phenylalkane derivatives when / Mycobacterium neoaurum and / Rhodococcus erythropolis were cultured in the presence of various phenylalkanes. Appl Microbiol Biotechnol 93:343-55 CrossRef
    26. Hopper DJ, Cottrell L (2003) Alkylphenol biotransformations catalyzed by 4-ethylphenol methylenehydroxylase. Appl Environ Microbiol 69:3650-652 CrossRef
    27. H?sel W, Conn EE (1982) The aglycone specificity of plant beta-glycosidases. Trends Biochem Sci 7:219-21 CrossRef
    28. Hu JY, Aizawa T (2003) Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Res 37:1213-222 CrossRef
    29. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by / Trametes versicolor and / Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 66:4157-160
    30. Hundt K, Wagner M, Becher D, Hammer E, Schauer F (1998) Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium / Ralstonia picketii in soil and compost. Chemosphere 36:2321-335 CrossRef
    31. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout ( / Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194-02
    32. King RR, Lawrence CH, Calhoun LA (2000) Microbial glucosylation of thaxtomin A, a partial detoxification. J Agr Food Chem 48:512-14 CrossRef
    33. Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. Gustav Fischer Verlag, Stuttgart, Germany
    34. Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2002) Enzymatic synthesis of alpha-arbutin by alpha-anomer-selective-glucosylation of hydroquinone using lyophilized cells of / Xanthomonas campestris WU-9701. J Biosci Bioeng 93:328-30
    35. Nakagawa H, Dobashi Y, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) Alpha-anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of / Xanthomonas campestris WU-9701. J Biosci Bioeng 89:138-44 CrossRef
    36. Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by / Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50:241-53 CrossRef
    37. Nhi-Cong LT, Mikolasch A, Klenk HP, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in / Rhodococcus ruber and / Mycobacterium neoaurum. Int Biodeterior Biodegrad 63:201-07 CrossRef
    38. Noguchi K, Nakagawa H, Yoshiyama M, Shimura S, Kirimura K, Usami S (1998) Anomer-selective glucosylation of l-menthol using lyophilized cells of / Saccharomyces cerevisiae. J Ferment Bioeng 85:436-38 CrossRef
    39. Reeve CD, Carver MA, Hopper DJ (1989) The purification and characterization of 4-ethylphenol methylene-hydroxylase, a flavocytochrome from / Pseudomonas putida Jd1. Biochem J 263:431-37
    40. Reeve CD, Carver MA, Hopper DJ (1990) Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Biochem J 269:815-19
    41. Riou C, Salmon J-M, Vallier M-J, Günata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from / Aspergillus oryzae. Appl Environ Microbiol 64:3607-614
    42. Romero MC, Hammer E, Hanschke R, Arambarri AM, Schauer F (2005) Biotransformation of biphenyl by the filamentous fungus / Talaromyces helicus. World J Microbiol Biotechnol 21:101-06 CrossRef
    43. Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of / Xanthomonas campestris WU-9701. J Biosci Bioeng 90:625-30
    44. Sato T, Takeuchi H, Takahashi K, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kino K, Kirimura K (2003) Selective alpha-glucosylation of eugenol by alpha-glucosyl transfer enzyme of / Xanthomonas campestris WU-9701. J Biosci Bioeng 96:199-02
    45. Senesi N, Chen Y (1989) Interactions of toxic organic chemicals with humic substances. In: Gerstl Z, Chen Y, Mingelgrin U, Yaron B (eds) Toxic organic chemicals in porous media, Ecological studies, vol 73, Springer-Verlag. Berlin, Heidelberg, pp 37-0 CrossRef
    46. Shibata A, Inoue Y, Katayama A (2006) Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils. Sci Total Environ 367:979-87 CrossRef
    47. Shibata A, Katayama A (2007) Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by / Thauera sp., strain R5. Appl Microbiol Biotechnol 75:1151-161 CrossRef
    48. Shibata A, Toyota K, Miyake K, Katayama A (2007) Anaerobic biodegradation of 4-alkylphenols in a paddy soil microcosm supplemented with nitrate. Chemosphere 68:2096-103 CrossRef
    49. Smith RV, Rosazza JP (1975) Microbial models of mammalian metabolism. J Pharm Sci 64:1737-759 CrossRef
    50. Stojic N, Eric S, Kuzmanovski I (2010) Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks. J Mol Graph Model 29:450-60 CrossRef
    51. Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW, Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by / Rhizoctonia solani. Mycol Res 96:509-17 CrossRef
    52. Thomas KV, Balaam J, Hurst MR, Thain JE (2004) Identification of in vitro estrogen and androgen receptor agonists in north sea offshore produced water discharges. Environ Toxicol Chem 23:1156-163 CrossRef
    53. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175-82 CrossRef
    54. Zhang D, Yang Y, Leakey JEA, Cerniglia CE (1996) Phase I and phase II enzymes produced by / Cunninghamella elegans for the metabolism of xenobiotics. FEMS Micobiol Lett 138:221-26 CrossRef
  • 作者单位:Veronika Hahn (1)
    Katharina Sünwoldt (1)
    Annett Mikolasch (1)
    Frieder Schauer (1)

    1. Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487, Greifswald, Germany
  • ISSN:1432-0614
文摘
The environmental pollutant 4-sec-butylphenol (4-sec-BP) which possesses estrogenic properties was transformed by the aerobic Gram-positive bacteria Mycobacterium neoaurum and Nocardia cyriacigeorgica into three main products (P1–P3) which were isolated and structurally characterized in detail. Two of them were products of a process resembling anaerobic metabolism of alkylphenols based on modifications of the alkyl side chain of 4-sec-BP. The first product (P1) was identified as 4-(2-hydroxy-1-methylpropyl)-phenol. The second product P2 was isolated as a mixture of at least four structures which could be identified as I 4-sec-butylidenecyclohexa-2,5-dienone; II 4-(1-methylenepropyl)-phenol; III 4-(1-methylpropenyl)-phenol; and IV 4-(1-methylallyl)-phenol. In contrast to P1 and P2, the third product (P3) resulted from a modification of the hydroxyl group of 4-sec-BP. This product was only formed by M. neoaurum and was identified as the glucoside conjugate 4-sec-butylphenol-α-d-glucopyranoside. Since in general, fungi synthesize sugar conjugates to detoxify hazardous pollutants, the formation of this conjugate is a peculiarity of M. neoaurum. Thus, altogether, six products were formed from 4-sec-BP and different transformation pathways are introduced. The hydroxylating and glucosylating capacity of the characterized bacteria open up applications in environmental protection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700