Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid
详细信息    查看全文
  • 作者:Damián E. Berardi ; Carolina Flumian ; Paola B. Campodónico…
  • 关键词:Mammary cancer ; Retinoic acid receptors ; Luminal and myoepithelial cells ; EMT
  • 刊名:Cellular Oncology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:38
  • 期:4
  • 页码:289-305
  • 全文大小:5,412 KB
  • 参考文献:1.D.G. Evans, L.D. Burnell, P. Hopwood, A. Howell, Perception of risk in women with a family history of breast cancer. Br. J. Cancer 67, 612-14 (1993)PubMed Central PubMed View Article
    2.L. Rask, E. Balslev, R. Sokilde, E. Hogdall, H. Flyger, J. Eriksen, T. Litman, Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell. Oncol. 37, 215-27 (2014). doi:10.-007/?s13402-014-0176-6 View Article
    3.A. Rawat, G. Gopisetty, R. Thangarajan, E4BP4 is a repressor of epigenetically regulated SOSTDC1 expression in breast cancer cells. Cell. Oncol. 37, 409-19 (2014). doi:10.-007/?s13402-014-0204-6 View Article
    4.M. Nguyen, M.C. Lee, J.L. Wang, J.S. Tomlinson, Z.M. Shao, M.L. Alpaugh, S.H. Barsky, The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene 19, 3449-459 (2000). doi:10.-038/?sj.?onc.-203677 PubMed View Article
    5.S.H. Barsky, Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype. Exp. Mol. Pathol. 74, 113-22 (2003)PubMed View Article
    6.S. Bravaccini, A.M. Granato, L. Medri, F. Foca, F. Falcini, W. Zoli, M. Ricci, G. Lanzanova, N. Masalu, L. Serra, F. Buggi, S. Folli, R. Silvestrini, D. Amadori, Biofunctional characteristics of in situ and invasive breast carcinoma. Cell. Oncol. 36, 303-10 (2013). doi:10.-007/?s13402-013-0135-7 View Article
    7.S. Wan, Y. Liu, Y. Weng, W. Wang, W. Ren, C. Fei, Y. Chen, Z. Zhang, T. Wang, J. Wang, Y. Jiang, L. Zhou, T. He, Y. Zhang, BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cell. Oncol. 37, 363-75 (2014). doi:10.-007/?s13402-014-0197-1 View Article
    8.K. Polyak, M. Hu, Do myoepithelial cells hold the key for breast tumor progression? J. Mammary Gland Biol. Neoplasia 10, 231-47 (2005). doi:10.-007/?s10911-005-9584-6 PubMed View Article
    9.T. Gudjonsson, M.C. Adriance, M.D. Sternlicht, O.W. Petersen, M.J. Bissell, Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J. Mammary Gland Biol. Neoplasia 10, 261-72 (2005). doi:10.-007/?s10911-005-9586-4 PubMed Central PubMed View Article
    10.L.A. Gordon, K.T. Mulligan, H. Maxwell-Jones, M. Adams, R.A. Walker, J.L. Jones, Breast cell invasive potential relates to the myoepithelial phenotype. Int. J. Cancer 106, 8-6 (2003). doi:10.-002/?ijc.-1172 PubMed View Article
    11.T. Vargo-Gogola, J.M. Rosen, Modelling breast cancer: one size does not fit all. Nat. Rev. Cancer 7, 659-72 (2007). doi:10.-038/?nrc2193 PubMed View Article
    12.V. Bumaschny, A. Urtreger, M. Diament, M. Krasnapolski, G. Fiszman, S. Klein, E.B. Joffe, Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model. Breast Cancer Res. 6, R116–R129 (2004). doi:10.-186/?bcr757 PubMed Central PubMed View Article
    13.L.B. Todaro, M.J. Veloso, P.B. Campodonico, L.I. Puricelli, E.F. Farias, E.D. Bal de Kier Joffe, A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression. Breast Cancer (2012). doi:10.-007/?s12282-012-0342-5 PubMed
    14.C.M. Perou, T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees, J.R. Pollack, D.T. Ross, H. Johnsen, L.A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S.X. Zhu, P.E. Lonning, A.L. Borresen-Dale, P.O. Brown, D. Botstein, Molecular portraits of human breast tumours. Nature 406, 747-52 (2000). doi:10.-038/-5021093 PubMed View Article
    15.C. Santos, R. Sanz-Pamplona, E. Nadal, J. Grasselli, S. Pernas, R. Dienstmann, V. Moreno, J. Tabernero, R. Salazar, Intrinsic cancer subtypes–next steps into personalized medicine. Cell. Oncol. 38, 3-6 (2015). doi:10.-007/?s13402-014-0203-7 View Article
    16.T. Karn, L. Pusztai, U. Holtrich, T. Iwamoto, C.Y. Shiang, M. Schmidt, V. Muller, C. Solbach, R. Gaetje, L. Hanker, A. Ahr, C. Liedtke, E. Ruckhaberle, M. Kaufmann, A. Rody, Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PLoS One 6, e28403 (2011). doi:10.-371/?journal.?pone.-028403 PubMed Central PubMed View Article
    17.E.A. Rakha, S.E. Elsheikh, M.A. Aleskandarany, H.O. Habashi, A.R. Green, D.G. Powe, M.E. El-Sayed, A. Benhasouna, J.S. Brunet, L.A. Akslen, A.J. Evans, R. Blamey, J.S. Reis-Filho, W.D. Foulkes, I.O. Ellis, Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin. Cancer Res. 15, 2302-310 (2009). doi:10.-158/-078-0432.?CCR-08-2132 PubMed View Article
    18.M. Bryan, E.D. Pulte, K.C. Toomey, L. Pliner, A.C. Pavlick, T. Saunders, R. Wieder, A pilot phase II trial of all-trans retinoic acid (Vesanoid) and paclitaxel (Taxol) in patients with recurrent or metastatic breast cancer. Invest. New Drugs 29, 1482-487 (2011). doi:10.-
  • 作者单位:Damián E. Berardi (1)
    Carolina Flumian (1)
    Paola B. Campodónico (1) (5)
    Alejandro J. Urtreger (1) (2)
    María I. Diaz Bessone (1)
    Andrea N. Motter (3)
    Elisa D. Bal de Kier Joffé (1) (2)
    Eduardo F. Farias (4)
    Laura B. Todaro (1) (2)

    1. Research Area, Institute of Oncology “Angel H. Roffo- University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
    5. Genzyme de Argentina S.A., Buenos Aires, Argentina
    2. Member of the Scientific Research Career of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
    3. Scientific Coordination (CC) Operative Unit, Biological Containment Center (UOCCB) ANLIS “Dr. Carlos G. Malbrán- Buenos Aires, Argentina
    4. Division of Hematology-Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
  • 刊物主题:Cancer Research; Biomedicine general; Pathology; Oncology;
  • 出版者:Springer Netherlands
  • ISSN:2211-3436
文摘
Purpose Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. Materials and methods The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. Results We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. Conclusions Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700