Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model
详细信息    查看全文
  • 作者:Nadav S Bar (1)
    Nicole Radde (2)
  • 刊名:BMC Systems Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:3
  • 期:1
  • 全文大小:581KB
  • 参考文献:1. Birkett S, de Lange K: Limitations of conventional models and a conceptual framework for a nutrient flow representation of energy utilization by animals. / Brit J Nutr 2001, 86:647鈥?59. CrossRef
    2. Kitano H: International alliances for quantitative modeling in systems biology. / Mol Syst Biol 2005., 1: 2005.0007
    3. Concei莽芒o L, Verreth J, Verstegen M, Huisman E: A preliminary model for dynamic simulation of growth in fish larvae: application to the African catfish Clarias gariepinus and turbot Scophthalmus maximus. / Aquaculture 1998, 163:215鈥?35. CrossRef
    4. Alver MO: Modeling, Instrumentation and Control in Marine Larviculture. / PhD thesis Norwegian University of Science and Technology, Trondheim, Norway 2006.
    5. Lupatsch I, Kissil GW: Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). / Aquaculture 2005, 248:83鈥?5. CrossRef
    6. Hua K, Bureau D: Modelling digestible phosphorus content of salmonid fish feeds. / Aquaculture 2006, 254:455鈥?65. CrossRef
    7. Hop H, Tonn WM, Welch HE: Bioenergetics of Arctic cod ( Boreogadus saida ) at low temperatures. / Can J Fish Aquat Sci 1997, 54:1772鈥?784. CrossRef
    8. MacNamara J: A perspective on research and future of metabolic models of farm animals. / Progress in research on energy and protein metabolism, 109 / (Edited by: Souffrant W, Metges C). Wageningen Academic Publishers 2003, 99鈥?12.
    9. Vetharaniam I, McCall D, Fennessy P, Garrick D: A model of mammalian energetics and growth: model development. / Agr Syst 2001, 68:55鈥?8. CrossRef
    10. J酶rgensen C, Fiksen O: State-dependent energy allocation in cod ( Gadus morhua ). / Can J Fish Aquat Sci 2006, 63:186鈥?99. CrossRef
    11. Olsen O, Balchen J: Structured modelling of Fish Physiology. / Math Biosci 1992, 112:81鈥?13. CrossRef
    12. Jobling M: Fish Bioenergetics. / 1 Edition Chapman and Hall 1994.
    13. McCarthy I, Houlihan D: The effect of temperature on protein metabolism in fish: The possible consequences for wild Atlantic salmon ( Salmo salar L. ) stocks in Europe as a result of global warming. / Global Warming: Implications for Freshwater and Marine Fish, no. 61 in Society of Experimental Biology Seminar Series / (Edited by: Wood C, McDonald D). Cambridge, U.K.: Cambridge University Press 1997, 51鈥?7.
    14. Owen S, McCarthy I, Watt P, Ladero V, Sanchez J, Houlihan D, Rennie M:In vivo rates of protein synthesis in Atlantic salmon ( Salmo salar L.) smolts determined using a stable isotope flooding dose technique. / Fish Physiol Biochem 1999, 20:87鈥?4. CrossRef
    15. McCarthy I, Moksness E, Pavlov D, Houlihan D: Effects of water temperature on protein synthesis and protein growth in juvenile Atlantic wolffish ( Anarhichas lupus ). / Can J Fish Aquat Sci 1999, 56:231鈥?41. CrossRef
    16. Houlihan D, Carter C, McCarthy I: Protein synthesis in fish. / Metabolic Biochemistry / (Edited by: Hochachka P, Mommsen T). Amsterdam, The Netherlands: Elsevier 1995, 191鈥?20. CrossRef
    17. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J: / Molecular Cell Biology / 5 Edition 41 Madison Avenue, NY: W.H. Freeman and Company 2004.
    18. Bajzer Z, Vuk-Pavlovic S: Modeling positive regulatory feedbacks in cell-cell interactions. / Biosystems 2005, 80:1鈥?0. CrossRef
    19. Bar NS, Sigholt T, Shearer KD, Krogdahl A: A Dynamic Model of Nutrient Pathways, Growth and Body Composition in Fish. / Can J Fish Aquat Sci 2007, 64:1669鈥?682. CrossRef
    20. Ho Y, Varley J, Mantalaris A: Development and analysis of a mathematical model for antibody-producing GS-NS0 cells under normal and hyperosmotic culture conditions. / Biotechnol Prog 2006, 22:1560鈥?569.
    21. Kontoravdi C, Wong D, Lam C, Lee Y, Yap M, Pistikopoulos E, Mantalaris A: Modeling amino acid metabolism in mammalian cells - towards the development of a model library. / Biotechnol Prog 2007, 23:1261鈥?269. CrossRef
    22. Lehninger: / Principles of Biochemisty / 1 Edition W.H. Freeman and Company 2005.
    23. Refstie S, Olli JJ, Standal H: Feed intake, growth and protein utilisation by post-smolt Atlantic salmon ( salmo salar ) in response to graded levels of fish protein hydrolysate in the diet. / Aquaculture 2004, 239:331鈥?49. CrossRef
    24. Ji H, Bradley TM, Tremblay GC: Atlantic Salmon ( Salmo salar ) Fed L-Carnitine Exhibit Altered Intermediary Metabolism and Reduced Tissue Lipid, but No Change in Growth Rate. / J Nutr 1996,126(8):1937鈥?950.
    25. Waiwood B, Haya K, Eeckhaute L: Energy metabolism of hatchery-reared juvenile salmon ( Salmo salar ) exposed to low pH. / Comp Biochem Physiol 1992, 101C:49鈥?6.
    26. Haya K, Waiwood B, Eeckhaute LV: Disruption Of Energy Metabolism And Smoltification During Exposure Of Juvenile Atlantic Salmon ( Salmo Salar ) To Low PH. / Comp Biochem Physiol 1985,82C(2):323鈥?29.
    27. Schuhmacher A, Wax C, Gropp JM: Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. / Aquaculture 1997, 151:15. CrossRef
    28. Walton MJ, Wilson RP: Postprandial changes in plasma and liver free amino acids of rainbow trout fed complete diets containing casein. / Aquaculture 1986,51(2):105鈥?15. CrossRef
    29. Murai T, Ogata H, Hirasawa Y, Akiyama T, Nose T: Portal Absorption and Hepatic Uptake of Amino Acids in Rainbow Trout Forced-Fed Complete Diets Containing Casein or Crystalline Amino Acids. / Nippon Suisan Gakkaishi 1987,53(10):1847鈥?859.
    30. Houlihan D, Boujard T, Jobling M, (Eds): Food Intake in Fish. Oxford, UK: Blackwell Science 2001.
    31. Fauconneau B, Mady MP, LeBail PY: Effect of growth hormone on muscle protein synthesis in rainbow trout ( Oncorhynchus mykiss ) and Atlantic salmon ( Salmo salar ). / Fish Physiol Biochem 1996, 15:49鈥?6. CrossRef
    32. Cacho O: Protein and fat dynamics in fish: A bioenergetic model applied to Aquaculture. / Ecol Model 1990, 50:33鈥?6. CrossRef
    33. Zhou Z, Xie S, Lei W, Zhu X, Yang Y: A bioenergetic model to estimate feed requirement of gibel carp, Carassius auratus gibeliom. / Aquaculture 2005, 248:287鈥?97. CrossRef
    34. Wood CW: Influence of feeding, exercise and temperature on nitrogen metabolism and excretion. / Nitrogen Excretion / (Edited by: Wright P, Anderson P). London, UK: Academic Press 2001, 201鈥?38. CrossRef
    35. Shearer K, 脜sg氓rd T, Andorsd枚ttir G, Aas G: Whole body elemental and proximate composition of Atlantic salmon Salmo salar during the life cycle. / J Fish Biol 1994, 44:785鈥?97. CrossRef
    36. Koojiman S: / Dynamic Energy and Mass Budgets in Biological Systems / 2 Edition Cambridge, UK: Cambridge University Press 2000. CrossRef
    37. Machiels M, Henken A: A Dynamic Simulation Model for Growth of the African Catfish, Clarias gariepinus (Burchell 1822) I. Effect of Feeding Level on Growth and Energy Metabolism. / Aquaculture 1986, 56:29鈥?2. CrossRef
    38. Murray JD: / Mathematical Biology, Volume 19 of Biomathematics New York: Springer-Verlag 1980.
    39. Segel LA: / Modeling Dynamic Phenomena in Molecular and Cellular Biology Cambridge, UK: Cambridge University Press 1984.
    40. Gillooly J, Brown J, West G, Savage V, Charnov E: Effects of Size and Temperature on Metabolic rate. / Science 2001, 293:2248鈥?251. CrossRef
    41. Bar N, Lale R: Modeling and Control of the Protein Synthesis process in Eukaryotic cells. / IEEE Proceedings: Conference on Decision and Control (CDC), Cancun, Mexico 2008, 179鈥?84.
    42. Bar NS, Morris DR: Dynamic model of the process of protein synthesis in Eukaryotic cells. / B Math Biol 2007, 69:361鈥?93. CrossRef
    43. Halver JE, Hardy RW: / Fish Nutrition / 3 Edition California, USA: Academic Press 2002.
    44. Voet D: / Biochemistry / 3 Edition Hoboken, NJ: John Wiley & Sons, inc 2004. [Wiley International Edition]
    45. Halestrap AP, Denton RM: Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-Coenzyme A thioesters and citrate. / Biochem J 1974,142(2):365鈥?.
    46. Munday MR: Regulation of mammalian acetyl-CoA carboxylase. / Biochem Soc T 2002,30(Pt 6):1059鈥?064.
    47. Saddik M, Gamble J, Witters L, Lopaschuk G: Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. / J Biol Chem 1993,268(34):25836鈥?5845.
    48. Chwalibog A, Thorbek G: Energy metabolism and lipogenesis in humans. / Thermochim Acta 2000, 349:43鈥?1. CrossRef
    49. Chwalibog A, Jakobsen K, Tauson AH, Thorbek G: Energy metabolism and nutrient oxidation in young pigs and rats during feeding, starvation and re-feeding. / Comp Biochem Phys A 2005, 140:299鈥?07.
    50. Bendiksen E, Shearer K, Hillestad M: Whole body chemical composition of farmed Atlantic salmon ( Salmo salar L.) from smolt to harvest. / Proceedings of XII International Symposium on Fish Nutrition and Feeding, Biarritz, France: INRA 2006, 121.
    51. Jobling M, Johansen S: The lipostat, hyperphagia and catch-up growth. / Aquac Res 1999, 30:473鈥?78. CrossRef
    52. Eaton S: Control of mitochondrial [beta]-oxidation flux. / Prog Lipid Res 2002,41(3):197鈥?39. CrossRef
    53. Oram JF, Bennetch SL, Neely JR: Regulation of Fatty Acid Utilization in Isolated Perfused Rat Hearts. / J Biol Chem 1973,248(15):5299鈥?309.
    54. Behal RH, Buxton DB, Robertson JG, Olson MS: Regulation of the Pyruvate Dehydrogenase Multienzyme Complex. / Annu Rev Nutr 1993, 13:497鈥?20. CrossRef
    55. Harris RA, Bowker-Kinley MM, Huang B, Wu P: Regulation of the activity of the pyruvate dehydrogenase complex. / Adv Enzyme Regul 2002, 42:249鈥?59. CrossRef
    56. Anderson S, Schirf V, McAlister-Henn L: Effect of AMP on mRNA Binding by Yeast NAD+ -Specific Isocitrate Dehydrogenase. / Biochemistry 2002,41(22):7065鈥?073. CrossRef
    57. Huang YC, Kumar A, Colman RF: Identification of the Subunits and Target Peptides of Pig Heart NAD-Specific Isocitrate Dehydrogenase Modified by the Affinity Label 8-(4-Bromo-2,3-dioxobutylthio)NAD. / Arch Biochem Biophys 1997, 348:207鈥?18. CrossRef
    58. Libor SM, Sundaram TK, Scrutton MC: Pyruvate carboxylase from a thermophilic Bacillus. Studies on the specificity of activation by acyl derivatives of coenzyme A and on the properties of catalysis in the absence of activator. / Biochem J 1978,169(3):543鈥?58.
    59. Dobly A, Martin S, Blaney S, Houlihan D: Protein growth rate in rainbow trout ( Oncorhynchus mykiss ) is negatively correlated to liver 20S proteasome activity. / Comp Biochem Physiol 2004, 137:75鈥?5.
    60. Mente E, Deguara S, Begona M, Houlihan D: White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon ( Salmo salar L.). / Aquaculture 2003, 225:133鈥?47. CrossRef
    61. Moyes CD, West TG: Exercise Metabolism of Fish. / Metabolic Biochemistry / (Edited by: Hochachka P, Mommsen T). Amsterdam, The Netherlands: Elsevier 1995, 368鈥?92.
    62. Bar NS: Dynamic Model of Fish Growth. / PhD thesis Department for Engineering Cybernetics, Norwegian University of Science and Technology 2007.
    63. Bendiksen E, Arnesen A, Jobling M: Effects of dietary fatty acid profile and fat content on smolting and seawater performance in Atlantic salmon ( Salmo salar L. ). / Aquaculture 2003, 225:149鈥?63. CrossRef
    64. Caldwell C, Hinshaw J: Nucleotides and adenylate energy charge as indicators of stress in rainbow trout ( Oncorhynchus mykiss ) subjected to a range of dissolved oxygen concentrations. / Comp Biochem Physiol 1994, 109B:313鈥?23.
    65. J酶rgensen J, Mustafa T: The effect of hypoxia in Carbohydrate metabolism in Flounder ( Platichthys flesus L.)-II. High energy phosphate compounds and the role of glycolytic and Gluconeogenetic enzymes. / Comp Biochem Physiol 1980, 67B:249鈥?56.
    66. Mommsen T, Hochachka P: The Purine Nucleotide Cycle as Two Temporally Separated Metabolic Units: A Study on Trout Muscle. / Metabolis 1988, 37:552鈥?58. CrossRef
    67. Ravindran S, Radke GA, Guest JR, Roche TE: Lipoyl Domain-based Mechanism for the Integrated Feedback Control of the Pyruvate Dehydrogenase Complex by Enhancement of Pyruvate Dehydrogenase Kinase Activity. / J Biol Chem 1996,271(2):653鈥?62. CrossRef
    68. Soundar S, Park JH, Huh TL, Colman RF: Evaluation by Mutagenesis of the Importance of 3 Arginines in alpha, beta, and gamma Subunits of Human NAD-dependent Isocitrate Dehydrogenase. / J Biol Chem 2003,278(52):52146鈥?2153. CrossRef
    69. LaNoue KF, Bryla J, Williamson JR: Feedback Interactions in the Control of Citric Acid Cycle Activity in Rat Heart Mitochondria. / J Biol Chem 1972,247(3):667鈥?79.
    70. Lindbladh C, Rault M, Hagglund C, Small WC, Mosbach K, B眉low L, Evans C, Srere PA: Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. / Biochemistry-Us 1994, 33:11692鈥?1698. CrossRef
    71. Moya-Falc贸n C, Hvattum E, Tran T, Thomassen M, Skorve J, Ruyter B: Phospholipid molecular species, -oxidation, desaturation and elongation of fatty acids in Atlantic salmon hepatocytes: Effects of temperature and 3-thia fatty acids. / Comp Biochem Physiol 2006, 145:68鈥?0. CrossRef
    72. Agrawal PK, Garg GK, Gollakota KG: Studies on two isozymes of aconitase from T. III. Enzymatic properties. / Biochem Bioph Res Co 1976,70(3):987鈥?96. CrossRef
    73. Hodges M, Yikilmaz E, Patterson G, Kasvosve I, Rouault TA, Gordeuk VR, Loyevsky M: An iron regulatory-like protein expressed in Plasmodium falciparum displays aconitase activity. / Mol Biochem Parasit 2005, 143:29鈥?8. CrossRef
    74. Kaplan RS, Mayor JA: Structure, function and regulation of the tricarboxylate transport protein from rat liver mitochondria. / Journal of Bioenergetics and Biomembranes 1993,25(5):503鈥?14. CrossRef
  • 作者单位:Nadav S Bar (1)
    Nicole Radde (2)

    1. Department of Chemical Engineering, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
    2. Institute for Systems Theory and Automatic Control, University of Stuttgart, 70550, Stuttgart, Germany
文摘
Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700