Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies
详细信息    查看全文
  • 作者:Marinka Brouwer ; Huiqing Zhou ; Nael Nadif Kasri
  • 关键词:Human induced pluripotent stem cells ; Reprogramming
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:54-72
  • 全文大小:854 KB
  • 参考文献:1.Lindvall, O., & Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature, 441, 1094–1096.PubMed CrossRef
    2.Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., & Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19, 1134–1140.PubMed CrossRef
    3.Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19, 193–204.PubMed CrossRef
    4.Daley, G. Q., Ahrlund-Richter, L., Auerbach, J. M., Benvenisty, N., Charo, R. A., Chen, G., Deng, H. K., Goldstein, L. S., Hudson, K. L., Hyun, I., Junn, S. C., Love, J., Lee, E. H., McLaren, A., Mummery, C. L., Nakatsuji, N., Racowsky, C., Rooke, H., Rossant, J., Scholer, H. R., Solbakk, J. H., Taylor, P., Trounson, A. O., Weissman, I. L., Wilmut, I., Yu, J., & Zoloth, L. (2007). The ISSCR guidelines for human embryonic stem cell research. Science, 315, 603–604.PubMed CrossRef
    5.Kalista, T., Freeman, H. A., Behr, B., Pera, R. R., & Scott, C. T. (2011). Donation of embryos for human development and stem cell research. Cell Stem Cell, 8, 360–362.PubMed CrossRef
    6.Scott, C. T., McCormick, J. B., DeRouen, M. C., & Owen-Smith, J. (2011). Democracy derived? New trajectories in pluripotent stem cell research. Cell, 145, 820–826.PubMedCentral PubMed CrossRef
    7.Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMed CrossRef
    8.Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II, J.A. (2007). Thomson, Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.
    9.Chung, Y. G., Eum, J. H., Lee, J. E., Shim, S. H., Sepilian, V., Hong, S. W., Lee, Y., Treff, N. R., Choi, Y. H., Kimbrel, E. A., Dittman, R. E., Lanza, R., & Lee, D. R. (2014). Human somatic cell nuclear transfer using adult cells. Cell Stem Cell, 14, 777–780.PubMed CrossRef
    10.Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H. S., Sritanaudomchai, H., Masterson, K., Larson, J., Eaton, D., Sadler-Fredd, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, R. L., Wolf, D., & Mitalipov, S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153, 1228–1238.PubMedCentral PubMed CrossRef
    11.Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMed CrossRef
    12.Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., Edel, M., Boue, S., & Izpisua Belmonte, J. C. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284.PubMed CrossRef
    13.Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3, 595–605.PubMed CrossRef
    14.Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews. Genetics, 12, 231–242.PubMed CrossRef
    15.Boulting, G. L., Kiskinis, E., Croft, G. F., Amoroso, M. W., Oakley, D. H., Wainger, B. J., Williams, D. J., Kahler, D. J., Yamaki, M., Davidow, L., Rodolfa, C. T., Dimos, J. T., Mikkilineni, S., MacDermott, A. B., Woolf, C. J., Henderson, C. E., Wichterle, H., & Eggan, K. (2011). A functionally characterized test set of human induced pluripotent stem cells. Nature Biotechnology, 29, 279–U147.PubMedCentral PubMed CrossRef
    16.Singh, U., Quintanilla, R. H., Grecian, S., Gee, K. R., Rao, M. S., & Lakshmipathy, U. (2012). Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Reviews and Reports, 8, 1021–1029.PubMedCentral PubMed CrossRef
    17.Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., Hock, H., & Hochedlinger, K. (2009). Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics, 41, 968–976.PubMedCentral PubMed CrossRef
    18.Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., & Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26, 101–106.PubMed CrossRef
    19.Utikal, J., Maherali, N., Kulalert, W., & Hochedlinger, K. (2009). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. Journal of Cell Science, 122, 3502–3510.PubMedCentral PubMed CrossRef
    20.Kim, J. B., Greber, B., Arauzo-Bravo, M. J., Meyer, J., Park, K. I., Zaehres, H., & Scholer, H. R. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649–643.PubMed CrossRef
    21.Lee, K. I., Kim, H. T., & Hwang, D. Y. (2014). Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions. Biomaterials, 35, 8330–8338.PubMed CrossRef
    22.Zhou, T., Benda, C., Dunzinger, S., Huang, Y. H., Ho, J. C., Yang, J. Y., Wang, Y., Zhang, Y., Zhuang, Q., Li, Y. H., Bao, X. C., Tse, H. F., Grillari, J., Grillari-Voglauer, R., Pei, D. Q., & Esteban, M. A. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature Protocols, 7, 2080–2089.PubMed CrossRef
    23.Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M. J., Corbella, B. A., Torrabadella, M., Veiga, A., & Izpisua Belmonte, J. C. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5, 353–357.PubMedCentral PubMed CrossRef
    24.Kunisato, A., Wakatsuki, M., Shinba, H., Ota, T., Ishida, I., & Nagao, K. (2011). Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells and Development, 20, 159–168.PubMed CrossRef
    25.Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., Kim, K., Miller, J. D., Ng, K., & Daley, G. Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood, 113, 5476–5479.PubMedCentral PubMed CrossRef
    26.Zhou, H. Y., Martinez, H., Sun, B., Li, A., Zimmer, M., Katsanis, N., Davis, E. E., Kurtzberg, J., Lipnick, S., Noggle, S., Rao, M., & Chang, S. (2015). Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood. Stem Cell Reviews and Reports, 11, 652–665.PubMedCentral PubMed CrossRef
    27.Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Huo, H., Loh, Y. H., Aryee, M. J., Lensch, M. W., Li, H., Collins, J. J., Feinberg, A. P., & Daley, G. Q. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29, 1117–1119.PubMedCentral PubMed CrossRef
    28.Bar-Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9, 17–23.PubMed CrossRef
    29.Marchetto, M. C., Yeo, G. W., Kainohana, O., Marsala, M., Gage, F. H., & Muotri, A. R. (2009). Transcriptional signature and memory retention of human-induced pluripotent stem cells. PloS One, 4, e7076.PubMedCentral PubMed CrossRef
    30.Ohi, Y., Qin, H., Hong, C., Blouin, L., Polo, J. M., Guo, T., Qi, Z., Downey, S. L., Manos, P. D., Rossi, D. J., Yu, J., Hebrok, M., Hochedlinger, K., Costello, J. F., Song, J. S., & Ramalho-Santos, M. (2011). Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology, 13, 541–549.PubMedCentral PubMed CrossRef
    31.Sanchez-Freire, V., Lee, A. S., Hu, S., Abilez, O. J., Liang, P., Lan, F., Huber, B. C., Ong, S. G., Hong, W. X., Huang, M., & Wu, J. C. (2014). Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. Journal of the American College of Cardiology, 64, 436–448.PubMedCentral PubMed CrossRef
    32.Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A. J., Melnick, A., Evans, T., & Hochedlinger, K. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28, 848–855.PubMedCentral PubMed CrossRef
    33.Nishino, K., Toyoda, M., Yamazaki-Inoue, M., Fukawatase, Y., Chikazawa, E., Sakaguchi, H., Akutsu, H., & Umezawa, A. (2011). DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genetics, 7, e1002085.PubMedCentral PubMed CrossRef
    34.Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., & Daley, G. Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.PubMedCentral PubMed CrossRef
    35.Hiler, D., Chen, X., Hazen, J., Kupriyanov, S., Carroll, P. A., Qu, C., Xu, B., Johnson, D., Griffiths, L., Frase, S., Rodriguez, A. R., Martin, G., Zhang, J., Jeon, J., Fan, Y., Finkelstein, D., Eisenman, R. N., Baldwin, K., & Dyer, M. A. (2015). Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell, 17, 101–115.PubMed CrossRef
    36.Wada, N., Wang, B., Lin, N. H., Laslett, A. L., Gronthos, S., & Bartold, P. M. (2011). Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Journal of Periodontal Research, 46, 438–447.PubMed CrossRef
    37.Oda, Y., Yoshimura, Y., Ohnishi, H., Tadokoro, M., Katsube, Y., Sasao, M., Kubo, Y., Hattori, K., Saito, S., Horimoto, K., Yuba, S., & Ohgushi, H. (2010). Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. The Journal of Biological Chemistry, 285, 29270–29278.PubMedCentral PubMed CrossRef
    38.Wang, Y., Liu, J., Tan, X., Li, G., Gao, Y., Liu, X., Zhang, L., & Li, Y. (2013). Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Reviews, 9, 451–460.PubMedCentral PubMed CrossRef
    39.Lee, T. H., Song, S. H., Kim, K. L., Yi, J. Y., Shin, G. H., Kim, J. Y., Kim, J., Han, Y. M., Lee, S. H., Lee, S. H., Shim, S. H., & Suh, W. (2010). Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circulation Research, 106, 120–128.PubMed CrossRef
    40.Li, C., Zhou, J., Shi, G., Ma, Y., Yang, Y., Gu, J., Yu, H., Jin, S., Wei, Z., Chen, F., & Jin, Y. (2009). Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 18, 4340–4349.PubMed CrossRef
    41.Qu, X., Liu, T., Song, K., Li, X., & Ge, D. (2012). Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PloS One, 7, e48161.PubMedCentral PubMed CrossRef
    42.Iida, K., Takeda-Kawaguchi, T., Hada, M., Yuriguchi, M., Aoki, H., Tamaoki, N., Hatakeyama, D., Kunisada, T., Shibata, T., & Tezuka, K. (2013). Hypoxia-enhanced derivation of iPSCs from human dental pulp cells. Journal of Dental Research, 92, 905–910.PubMed CrossRef
    43.Tamaoki, N., Takahashi, K., Tanaka, T., Ichisaka, T., Aoki, H., Takeda-Kawaguchi, T., Iida, K., Kunisada, T., Shibata, T., Yamanaka, S., & Tezuka, K. (2010). Dental pulp cells for induced pluripotent stem cell banking. Journal of Dental Research, 89, 773–778.PubMed CrossRef
    44.Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H. R., Hayek, A., & Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27, 2992–3000.PubMedCentral PubMed
    45.Medvedev, S. P., Grigor’eva, E. V., Shevchenko, A. I., Malakhova, A. A., Dementyeva, E. V., Shilov, A. A., Pokushalov, E. A., Zaidman, A. M., Aleksandrova, M. A., Plotnikov, E. Y., Sukhikh, G. T., & Zakian, S. M. (2011). Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells and Development, 20, 1099–1112.PubMed CrossRef
    46.Liu, H., Ye, Z., Kim, Y., Sharkis, S., & Jang, Y. Y. (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51, 1810–1819.PubMedCentral PubMed CrossRef
    47.Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.PubMed CrossRef
    48.Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., Robson, P., Zhong, S., & Ng, H. H. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 10, 353–360.PubMed CrossRef
    49.Zhang, P., Andrianakos, R., Yang, Y., Liu, C., & Lu, W. (2010). Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. The Journal of Biological Chemistry, 285, 9180–9189.PubMedCentral PubMed CrossRef
    50.Tsubooka, N., Ichisaka, T., Okita, K., Takahashi, K., Nakagawa, M., & Yamanaka, S. (2009). Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes to Cells : Devoted to Molecular & Cellular Mechanisms, 14, 683–694.CrossRef
    51.Yang, F., Yao, Y., Jiang, Y., Lu, L., Ma, Y., & Dai, W. (2012). Sumoylation is important for stability, subcellular localization, and transcriptional activity of SALL4, an essential stem cell transcription factor. The Journal of Biological Chemistry, 287, 38600–38608.PubMedCentral PubMed CrossRef
    52.Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., Liu, Y., Yong, J., Zhang, P., Cai, J., Liu, M., Li, H., Li, Y., Qu, X., Cui, K., Zhang, W., Xiang, T., Wu, Y., Zhao, Y., Liu, C., Yu, C., Yuan, K., Lou, J., Ding, M., & Deng, H. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3, 475–479.PubMed CrossRef
    53.Banito, A., Rashid, S. T., Acosta, J. C., Li, S., Pereira, C. F., Geti, I., Pinho, S., Silva, J. C., Azuara, V., Walsh, M., Vallier, L., & Gil, J. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes & Development, 23, 2134–2139.CrossRef
    54.Chou, B. K., Mali, P., Huang, X., Ye, Z., Dowey, S. N., Resar, L. M., Zou, C., Zhang, Y. A., Tong, J., & Cheng, L. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 21, 518–529.PubMedCentral PubMed CrossRef
    55.Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M. A., & Serrano, M. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460, 1136–1139.PubMedCentral PubMed CrossRef
    56.Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., & Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474, 225–229.PubMed CrossRef
    57.Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., Shibata, T., Kunisada, T., Takahashi, M., Takahashi, J., Saji, H., & Yamanaka, S. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.PubMed CrossRef
    58.Liu, X., Sun, H., Qi, J., Wang, L., He, S., Liu, J., Feng, C., Chen, C., Li, W., Guo, Y., Qin, D., Pan, G., Chen, J., Pei, D., & Zheng, H. (2013). Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature Cell Biology, 15, 829–838.PubMed CrossRef
    59.Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., & Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460, 1132–1135.PubMedCentral PubMed CrossRef
    60.Edel, M. J., Menchon, C., Menendez, S., Consiglio, A., Raya, A., & Izpisua Belmonte, J. C. (2010). Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes & Development, 24, 561–573.CrossRef
    61.Mali, P., Ye, Z., Hommond, H. H., Yu, X., Lin, J., Chen, G., Zou, J., & Cheng, L. (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005.PubMed CrossRef
    62.Onder, T. T., Kara, N., Cherry, A., Sinha, A. U., Zhu, N., Bernt, K. M., Cahan, P., Marcarci, B. O., Unternaehrer, J., Gupta, P. B., Lander, E. S., Armstrong, S. A., & Daley, G. Q. (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483, 598–602.PubMedCentral PubMed CrossRef
    63.Ke, Q., Li, L., Cai, B., Liu, C., Yang, Y., Gao, Y., Huang, W., Yuan, X., Wang, T., Zhang, Q., Harris, A. L., Tao, L., & Xiang, A. P. (2013). Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Human Molecular Genetics, 22, 2221–2233.PubMed CrossRef
    64.Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., Mansour, A. A., Caspi, I., Krupalnik, V., Zerbib, M., Maza, I., Mor, N., Baran, D., Weinberger, L., Jaitin, D. A., Lara-Astiaso, D., Blecher-Gonen, R., Shipony, Z., Mukamel, Z., Hagai, T., Gilad, S., Amann-Zalcenstein, D., Tanay, A., Amit, I., Novershtern, N., & Hanna, J. H. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 502, 65–70.PubMed CrossRef
    65.Sharma, A., Diecke, S., Zhang, W. Y., Lan, F., He, C., Mordwinkin, N. M., Chua, K. F., & Wu, J. C. (2013). The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. The Journal of Biological Chemistry, 288, 18439–18447.PubMedCentral PubMed CrossRef
    66.Picanco-Castro, V., Russo-Carbolante, E., Reis, L. C., Fraga, A. M., de Magalhaes, D. A., Orellana, M. D., Panepucci, R. A., Pereira, L. V., & Covas, D. T. (2011). Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells and Development, 20, 169–180.PubMed CrossRef
    67.Wang, W., Yang, J., Liu, H., Lu, D., Chen, X., Zenonos, Z., Campos, L. S., Rad, R., Guo, G., Zhang, S., Bradley, A., & Liu, P. (2011). Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 108, 18283–18288.PubMedCentral PubMed CrossRef
    68.Unternaehrer, J. J., Zhao, R., Kim, K., Cesana, M., Powers, J. T., Ratanasirintrawoot, S., Onder, T., Shibue, T., Weinberg, R. A., & Daley, G. Q. (2014). The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Reports, 3, 691–698.PubMedCentral PubMed CrossRef
    69.Yang, P., Wang, Y., Chen, J., Li, H., Kang, L., Zhang, Y., Chen, S., Zhu, B., & Gao, S. (2011). RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells, 29, 791–801.PubMed CrossRef
    70.Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P. J., Epstein, J. A., & Morrisey, E. E. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.PubMedCentral PubMed CrossRef
    71.Loewer, S., Cabili, M. N., Guttman, M., Loh, Y. H., Thomas, K., Park, I. H., Garber, M., Curran, M., Onder, T., Agarwal, S., Manos, P. D., Datta, S., Lander, E. S., Schlaeger, T. M., Daley, G. Q., & Rinn, J. L. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42, 1113–1117.PubMedCentral PubMed CrossRef
    72.Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X., & Liu, H. (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Developmental Cell, 25, 69–80.PubMed CrossRef
    73.Lin, S. L., Chang, D. C., Lin, C. H., Ying, S. Y., Leu, D., & Wu, D. T. (2011). Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Research, 39, 1054–1065.PubMedCentral PubMed CrossRef
    74.Lin, S. L., Chang, D. C., Ying, S. Y., Leu, D., & Wu, D. T. (2010). MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Research, 70, 9473–9482.PubMed CrossRef
    75.Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., Nishikawa, S., Tanemura, M., Mimori, K., Tanaka, F., Saito, T., Nishimura, J., Takemasa, I., Mizushima, T., Ikeda, M., Yamamoto, H., Sekimoto, M., Doki, Y., & Mori, M. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–638.PubMed CrossRef
    76.Subramanyam, D., Lamouille, S., Judson, R. L., Liu, J. Y., Bucay, N., Derynck, R., & Blelloch, R. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 29, 443–448.PubMedCentral PubMed CrossRef
    77.Worringer, K. A., Rand, T. A., Hayashi, Y., Sami, S., Takahashi, K., Tanabe, K., Narita, M., Srivastava, D., & Yamanaka, S. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14, 40–52.PubMedCentral PubMed CrossRef
    78.Lamouille, S., Subramanyam, D., Blelloch, R., & Derynck, R. (2013). Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Current Opinion in Cell Biology, 25, 200–207.PubMedCentral PubMed CrossRef
    79.He, X., Cao, Y., Wang, L., Han, Y., Zhong, X., Zhou, G., Cai, Y., Zhang, H., & Gao, P. (2014). Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis. PloS One, 9, e95213.PubMedCentral PubMed CrossRef
    80.Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., Chen, K., Li, Y., Liu, X., Xu, J., Zhang, S., Li, F., He, W., Labuda, K., Song, Y., Peterbauer, A., Wolbank, S., Redl, H., Zhong, M., Cai, D., Zeng, L., & Pei, D. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.PubMed CrossRef
    81.Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., & Melton, D. A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269–1275.PubMed CrossRef
    82.Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., & Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4, 16–19.PubMed CrossRef
    83.Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H. S., Hao, E., Hayek, A., & Ding, S. (2009). A chemical platform for improved induction of human iPSCs. Nature Methods, 6, 805–808.PubMedCentral PubMed CrossRef
    84.Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., Chen, J., Kuang, Y., Fei, J., Jiang, C., Wang, P., Pei, D., Ding, S., & Xie, X. (2011). Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 21, 1424–1435.PubMedCentral PubMed CrossRef
    85.Zhao, Z., Yu, R., Yang, J., Liu, X., Tan, M., Li, H., & Chen, J. (2012). Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype. PloS One, 7, e33953.PubMedCentral PubMed CrossRef
    86.Wang, Y., & Adjaye, J. (2011). A cyclic AMP analog, 8-Br-cAMP, enhances the induction of pluripotency in human fibroblast cells. Stem Cell Reviews, 7, 331–341.PubMed CrossRef
    87.Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., & Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7, 651–655.PubMed CrossRef
    88.Gharechahi, J., Pakzad, M., Mirshavaladi, S., Sharifitabar, M., Baharvand, H., & Salekdeh, G. H. (2014). The effect of Rho-associated kinase inhibition on the proteome pattern of dissociated human embryonic stem cells. Molecular BioSystems, 10, 640–652.PubMed CrossRef
    89.Ichida, J. K., Tcw, J., Williams, L. A., Carter, A. C., Shi, Y., Moura, M. T., Ziller, M., Singh, S., Amabile, G., Bock, C., Umezawa, A., Rubin, L. L., Bradner, J. E., Akutsu, H., Meissner, A., & Eggan, K. (2014). Notch inhibition allows oncogene-independent generation of iPS cells. Nature Chemical Biology, 10, 632–639.PubMedCentral PubMed CrossRef
    90.Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132, 1049–1061.PubMed CrossRef
    91.Qiu, C., Ma, Y., Wang, J., Peng, S., & Huang, Y. (2010). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Research, 38, 1240–1248.PubMedCentral PubMed CrossRef
    92.Dowell, K. G., Simons, A. K., Bai, H., Kell, B., Wang, Z. Z., Yun, K., & Hibbs, M. A. (2014). Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells, 32, 1161–1172.PubMedCentral PubMed CrossRef
    93.Baum, B., Settleman, J., & Quinlan, M. P. (2008). Transitions between epithelial and mesenchymal states in development and disease. Seminars in Cell & Developmental Biology, 19, 294–308.CrossRef
    94.Lim, J., & Thiery, J. P. (2012). Epithelial-mesenchymal transitions: insights from development. Development, 139, 3471–3486.PubMed CrossRef
    95.Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., Qin, B., Xu, J., Li, W., Yang, J., Gan, Y., Qin, D., Feng, S., Song, H., Yang, D., Zhang, B., Zeng, L., Lai, L., Esteban, M. A., & Pei, D. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7, 51–63.PubMed CrossRef
    96.dos Santos, R. L., Tosti, L., Radzisheuskaya, A., Caballero, I. M., Kaji, K., Hendrich, B., & Silva, J. C. R. (2014). MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner (vol 15, pg 102, 2014). Cell Stem Cell, 15, 392–392.CrossRef
    97.Federation, A. J., Bradner, J. E., & Meissner, A. (2014). The use of small molecules in somatic-cell reprogramming. Trends in Cell Biology, 24, 179–187.PubMedCentral PubMed CrossRef
    98.Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge, J., Xu, J., Zhang, Q., Zhao, Y., & Deng, H. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.PubMed CrossRef
    99.Hockemeyer, D., Soldner, F., Cook, E. G., Gao, Q., Mitalipova, M., & Jaenisch, R. (2008). A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 3, 346–353.PubMedCentral PubMed CrossRef
    100.Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27, 2667–2674.PubMed CrossRef
    101.Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., & Nagy, A. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770.PubMedCentral PubMed CrossRef
    102.Grabundzija, I., Wang, J., Sebe, A., Erdei, Z., Kajdi, R., Devaraj, A., Steinemann, D., Szuhai, K., Stein, U., Cantz, T., Schambach, A., Baum, C., Izsvak, Z., Sarkadi, B., & Ivics, Z. (2013). Sleeping beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Research, 41, 1829–1847.PubMedCentral PubMed CrossRef
    103.Ye, L., Chang, J. C., Lin, C., Qi, Z., Yu, J., & Kan, Y. W. (2010). Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proceedings of the National Academy of Sciences of the United States of America, 107, 19467–19472.PubMedCentral PubMed CrossRef
    104.Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, J.A. (2009). Thomson, Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.
    105.Narsinh, K. H., Jia, F., Robbins, R. C., Kay, M. A., Longaker, M. T., & Wu, J. C. (2011). Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nature Protocols, 6, 78–88.PubMedCentral PubMed CrossRef
    106.Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3, 340–345.PubMedCentral PubMed CrossRef
    107.Ramalingam, S., London, V., Kandavelou, K., Cebotaru, L., Guggino, W., Civin, C., & Chandrasegaran, S. (2013). Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells and Development, 22, 595–610.PubMedCentral PubMed CrossRef
    108.Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., & Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.PubMedCentral PubMed CrossRef
    109.Warren, L., Ni, Y., Wang, J., & Guo, X. (2012). Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Scientific Reports, 2, 657.PubMedCentral PubMed CrossRef
    110.Yoshioka, N., Gros, E., Li, H. R., Kumar, S., Deacon, D. C., Maron, C., Muotri, A. R., Chi, N. C., Fu, X. D., Yu, B. D., & Dowdy, S. F. (2013). Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 13, 246–254.PubMed CrossRef
    111.Mandal, P. K., & Rossi, D. J. (2013). Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature Protocols, 8, 568–582.PubMed CrossRef
    112.Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., & Kim, K. S. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.PubMedCentral PubMed CrossRef
    113.Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85, 348–362.PubMedCentral PubMed CrossRef
    114.Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., Takada, N., Inoue, M., Hasegawa, M., Kawamata, S., & Nishikawa, S. (2011). Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 108, 14234–14239.PubMedCentral PubMed CrossRef
    115.Hu, K. (2014). All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells and Development, 23, 1285–1300.PubMedCentral PubMed CrossRef
    116.Toivonen, S., Ojala, M., Hyysalo, A., Ilmarinen, T., Rajala, K., Pekkanen-Mattila, M., Aanismaa, R., Lundin, K., Palgi, J., Weltner, J., Trokovic, R., Silvennoinen, O., Skottman, H., Narkilahti, S., Aalto-Setala, K., & Otonkoski, T. (2013). Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Translational Medicine, 2, 83–93.PubMedCentral PubMed CrossRef
    117.Carey, B. W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., & Jaenisch, R. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 106, 157–162.PubMedCentral PubMed CrossRef
    118.Somers, A., Jean, J. C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., Lafyatis, R., Demierre, M. F., Weiss, D. J., French, D. L., Gadue, P., Murphy, G. J., Mostoslavsky, G., & Kotton, D. N. (2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28, 1728–1740.PubMedCentral PubMed CrossRef
    119.Sommer, C. A., Sommer, A. G., Longmire, T. A., Christodoulou, C., Thomas, D. D., Gostissa, M., Alt, F. W., Murphy, G. J., Kotton, D. N., & Mostoslavsky, G. (2010). Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells, 28, 64–74.PubMed
    120.Ruiz, S., Panopoulos, A. D., Montserrat, N., Multon, M. C., Daury, A., Rocher, C., Spanakis, E., Batchelder, E. M., Orsini, C., Deleuze, J. F., & Izpisua Belmonte, J. C. (2012). Generation of a drug-inducible reporter system to study cell reprogramming in human cells. The Journal of Biological Chemistry, 287, 40767–40778.PubMedCentral PubMed CrossRef
    121.Newman, J. C., Bailey, A. D., Fan, H. Y., Pavelitz, T., & Weiner, A. M. (2008). An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genetics, 4, e1000031.PubMedCentral PubMed CrossRef
    122.Feschotte, C. (2006). The piggyBac transposon holds promise for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 103, 14981–14982.PubMedCentral PubMed CrossRef
    123.Grabundzija, I., Irgang, M., Mates, L., Belay, E., Matrai, J., Gogol-Doring, A., Kawakami, K., Chen, W., Ruiz, P., Chuah, M. K., VandenDriessche, T., Izsvak, Z., & Ivics, Z. (2010). Comparative analysis of transposable element vector systems in human cells. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18, 1200–1209.CrossRef
    124.Davis, R. P., Nemes, C., Varga, E., Freund, C., Kosmidis, G., Gkatzis, K., de Jong, D., Szuhai, K., Dinnyes, A., & Mummery, C. L. (2013). Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation; Research in Biological Diversity, 86, 30–37.PubMed CrossRef
    125.Cheng, L., Hansen, N. F., Zhao, L., Du, Y., Zou, C., Donovan, F. X., Chou, B. K., Zhou, G., Li, S., Dowey, S. N., Ye, Z., Program, N. C. S., Chandrasekharappa, S. C., Yang, H., Mullikin, J. C., & Liu, P. P. (2012). Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell, 10, 337–344.PubMedCentral PubMed CrossRef
    126.Montserrat, N., Garreta, E., Gonzalez, F., Gutierrez, J., Eguizabal, C., Ramos, V., Borros, S., & Izpisua Belmonte, J. C. (2011). Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. The Journal of Biological Chemistry, 286, 12417–12428.PubMedCentral PubMed CrossRef
    127.Si-Tayeb, K., Noto, F. K., Sepac, A., Sedlic, F., Bosnjak, Z. J., Lough, J. W., & Duncan, S. A. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Developmental Biology, 10, 81.PubMedCentral PubMed CrossRef
    128.Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., Panetta, N. J., Chen, Z. Y., Robbins, R. C., Kay, M. A., Longaker, M. T., & Wu, J. C. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7, 197–199.PubMedCentral PubMed CrossRef
    129.Diecke, S., Lu, J.M., Lee, J., Termglinchan, V., Kooreman, N.G., Burridge, P.W., Ebert, A.D., Churko, J.M., Sharma, A., Kay, M.A., Wu, J.C. (2015). Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Scientific Reports, 5.
    130.Dickens, S., Van den Berge, S., Hendrickx, B., Verdonck, K., Luttun, A., & Vranckx, J. J. (2010). Nonviral transfection strategies for keratinocytes, fibroblasts, and endothelial progenitor cells for ex vivo gene transfer to skin wounds. Tissue Eng Part C Methods, 16, 1601–1608.PubMed CrossRef
    131.Schlaeger, T. M., Daheron, L., Brickler, T. R., Entwisle, S., Chan, K., Cianci, A., DeVine, A., Ettenger, A., Fitzgerald, K., Godfrey, M., Gupta, D., McPherson, J., Malwadkar, P., Gupta, M., Bell, B., Doi, A., Jung, N., Li, X., Lynes, M. S., Brookes, E., Cherry, A. B., Demirbas, D., Tsankov, A. M., Zon, L. I., Rubin, L. L., Feinberg, A. P., Meissner, A., Cowan, C. A., & Daley, G. Q. (2015). A comparison of non-integrating reprogramming methods. Nature Biotechnology, 33, 58–63.PubMedCentral PubMed CrossRef
    132.Park, T. S., Huo, J. S., Peters, A., Talbot, C. C., Jr., Verma, K., Zimmerlin, L., Kaplan, I. M., & Zambidis, E. T. (2012). Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors. PloS One, 7, e42838.PubMedCentral PubMed CrossRef
    133.Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., & Yamanaka, S. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31, 458–466.PubMed CrossRef
    134.Fujie, Y., Fusaki, N., Katayama, T., Hamasaki, M., Soejima, Y., Soga, M., Ban, H., Hasegawa, M., Yamashita, S., Kimura, S., Suzuki, S., Matsuzawa, T., Akari, H., Era, T. (2014). New type of sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood. PloS One, 9.
    135.Nishimura, K., Sano, M., Ohtaka, M., Furuta, B., Umemura, Y., Nakajima, Y., Ikehara, Y., Kobayashi, T., Segawa, H., Takayasu, S., Sato, H., Motomura, K., Uchida, E., Kanayasu-Toyoda, T., Asashima, M., Nakauchi, H., Yamaguchi, T., & Nakanishi, M. (2011). Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. The Journal of Biological Chemistry, 286, 4760–4771.PubMedCentral PubMed CrossRef
    136.Kawagoe, S., Higuchi, T., Otaka, M., Shimada, Y., Kobayashi, H., Ida, H., Ohashi, T., Okano, H. J., Nakanishi, M., & Eto, Y. (2013). Morphological features of iPS cells generated from Fabry disease skin fibroblasts using Sendai virus vector (SeVdp). Molecular Genetics and Metabolism, 109, 386–389.PubMed CrossRef
    137.Ding, V. M., Ling, L., Natarajan, S., Yap, M. G., Cool, S. M., & Choo, A. B. (2010). FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. Journal of Cellular Physiology, 225, 417–428.PubMed CrossRef
    138.Hasegawa, Y., Tang, D., Takahashi, N., Hayashizaki, Y., Forrest, A. R., Consortium, F., & Suzuki, H. (2014). CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Scientific Reports, 4, 5228.PubMedCentral PubMed
    139.Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237–241.PubMed CrossRef
    140.Mathieu, J., Zhou, W., Xing, Y., Sperber, H., Ferreccio, A., Agoston, Z., Kuppusamy, K. T., Moon, R. T., & Ruohola-Baker, H. (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell, 14, 592–605.PubMedCentral PubMed CrossRef
    141.Chen, K. G., Mallon, B. S., McKay, R. D., & Robey, P. G. (2014). Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 14, 13–26.PubMedCentral PubMed CrossRef
    142.Rodin, S., Domogatskaya, A., Strom, S., Hansson, E. M., Chien, K. R., Inzunza, J., Hovatta, O., & Tryggvason, K. (2010). Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 28, 611–615.PubMed CrossRef
    143.Rodin, S., Antonsson, L., Niaudet, C., Simonson, O. E., Salmela, E., Hansson, E. M., Domogatskaya, A., Xiao, Z., Damdimopoulou, P., Sheikhi, M., Inzunza, J., Nilsson, A. S., Baker, D., Kuiper, R., Sun, Y., Blennow, E., Nordenskjold, M., Grinnemo, K. H., Kere, J., Betsholtz, C., Hovatta, O., & Tryggvason, K. (2014). Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications, 5, 3195.PubMed CrossRef
    144.Chen, G. K., Gulbranson, D. R., Hou, Z. G., Bolin, J. M., Ruotti, V., Probasco, M. D., Smuga-Otto, K., Howden, S. E., Diol, N. R., Propson, N. E., Wagner, R., Lee, G. O., Antosiewicz-Bourget, J., Teng, J. M. C., & Thomson, J. A. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 8, 424–U476.PubMedCentral PubMed CrossRef
    145.Saha, K., Mei, Y., Reisterer, C. M., Pyzocha, N. K., Yang, J., Muffat, J., Davies, M. C., Alexander, M. R., Langer, R., Anderson, D. G., & Jaenisch, R. (2011). Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 108, 18714–18719.PubMedCentral PubMed CrossRef
    146.Chen, K. G., Mallon, B. S., Hamilton, R. S., Kozhich, O. A., Park, K., Hoeppner, D. J., Robey, P. G., & McKay, R. D. (2012). Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Research, 9, 237–248.PubMedCentral PubMed CrossRef
    147.Kunova, M., Matulka, K., Eiselleova, L., Salykin, A., Kubikova, I., Kyrylenko, S., Hampl, A., & Dvorak, P. (2013). Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Translational Medicine, 2, 246–254.PubMedCentral PubMed CrossRef
    148.Amit, M., Chebath, J., Margulets, V., Laevsky, I., Miropolsky, Y., Shariki, K., Peri, M., Blais, I., Slutsky, G., Revel, M., & Itskovitz-Eldor, J. (2010). Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Reviews, 6, 248–259.PubMed CrossRef
    149.Zweigerdt, R., Olmer, R., Singh, H., Haverich, A., & Martin, U. (2011). Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 6, 689–700.PubMed CrossRef
    150.Serra, M., Brito, C., Correia, C., & Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30, 350–359.PubMed CrossRef
    151.Chen, A. K., Chen, X., Choo, A. B., Reuveny, S., & Oh, S. K. (2011). Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 7, 97–111.PubMed CrossRef
    152.Serra, M., Correia, C., Malpique, R., Brito, C., Jensen, J., Bjorquist, P., Carrondo, M. J., & Alves, P. M. (2011). Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PloS One, 6, e23212.PubMedCentral PubMed CrossRef
    153.Bergstrom, R., Strom, S., Holm, F., Feki, A., & Hovatta, O. (2011). Xeno-free culture of human pluripotent stem cells. Methods in Molecular Biology, 767, 125–136.PubMed CrossRef
    154.Wang, Y., Chou, B. K., Dowey, S., He, C. X., Gerecht, S., & Cheng, L. Z. (2013). Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Research, 11, 1103–1116.PubMedCentral PubMed CrossRef
    155.Beers, J., Gulbranson, D. R., George, N., Siniscalchi, L. I., Jones, J., Thomson, J. A., & Chen, G. K. (2012). Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nature Protocols, 7, 2029–2040.PubMedCentral PubMed CrossRef
    156.Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., Reik, W., Bertone, P., & Smith, A. (2014). Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 158, 1254–1269.PubMedCentral PubMed CrossRef
    157.Theunissen, T. W., Powell, B. E., Wang, H. Y., Mitalipova, M., Faddah, D. A., Reddy, J., Fan, Z. P., Maetzel, D., Ganz, K., Shi, L. Y., Lungjangwa, T., Imsoonthornruksa, S., Stelzer, Y., Rangarajan, S., D’Alessio, A., Zhang, J. M., Gao, Q., Dawlaty, M. M., Young, R. A., Gray, N. S., & Jaenisch, R. (2014). Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell, 15, 471–487.PubMedCentral PubMed CrossRef
    158.Yamada, M., Johannesson, B., Sagi, I., Burnett, L. C., Kort, D. H., Prosser, R. W., Paull, D., Nestor, M. W., Freeby, M., Greenberg, E., Goland, R. S., Leibel, R. L., Solomon, S. L., Benvenisty, N., Sauer, M. V., & Egli, D. (2014). Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature, 510, 533–536.PubMed CrossRef
    159.Ma, H., Morey, R., O’Neil, R. C., He, Y., Daughtry, B., Schultz, M. D., Hariharan, M., Nery, J. R., Castanon, R., Sabatini, K., Thiagarajan, R. D., Tachibana, M., Kang, E., Tippner-Hedges, R., Ahmed, R., Gutierrez, N. M., Van Dyken, C., Polat, A., Sugawara, A., Sparman, M., Gokhale, S., Amato, P., Wolf, D. P., Ecker, J. R., Laurent, L. C., & Mitalipov, S. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 511, 177–183.PubMed CrossRef
    160.Johannesson, B., Sagi, I., Gore, A., Paull, D., Yamada, M., Golan-Lev, T., Li, Z., LeDuc, C., Shen, Y., Stern, S., Xu, N., Ma, H., Kang, E., Mitalipov, S., Sauer, M. V., Zhang, K., Benvenisty, N., & Egli, D. (2014). Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell, 15, 634–642.PubMed CrossRef
    161.Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., Izpisua Belmonte, J. C., Rossi, D. J., Thomson, J. A., Eggan, K., Daley, G. Q., Goldstein, L. S., & Zhang, K. (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63–67.PubMedCentral PubMed CrossRef
    162.Ji, J., Ng, S. H., Sharma, V., Neculai, D., Hussein, S., Sam, M., Trinh, Q., Church, G. M., McPherson, J. D., Nagy, A., & Batada, N. N. (2012). Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells, 30, 435–440.PubMed CrossRef
    163.Liang, G., & Zhang, Y. (2013). Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell, 13, 149–159.PubMedCentral PubMed CrossRef
    164.Schlaeger, T. M., Daheron, L., Brickler, T. R., Entwisle, S., Chan, K., Cianci, A., DeVine, A., Ettenger, A., Fitzgerald, K., Godfrey, M., Gupta, D., McPherson, J., Malwadkar, P., Gupta, M., Bell, B., Doi, A., Jung, N., Li, X., Lynes, M. S., Brookes, E., Cherry, A. B. C., Demirbas, D., Tsankov, A. M., Zon, L. I., Rubin, L. L., Feinberg, A. P., Meissner, A., Cowan, C. A., & Daley, G. Q. (2015). A comparison of non-integrating reprogramming methods. Nature Biotechnology, 33, 58–U230.PubMedCentral PubMed CrossRef
  • 作者单位:Marinka Brouwer (1)
    Huiqing Zhou (2) (4)
    Nael Nadif Kasri (1) (2) (3)

    1. Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
    2. Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands
    4. Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands
    3. Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands
  • 刊物主题:Cell Biology;
  • 出版者:Springer US
  • ISSN:1558-6804
文摘
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer. Keywords Human induced pluripotent stem cells Reprogramming

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700