Quantification and localization of erythropoietin-receptor-expressing cells in the liver of Xenopus laevis
详细信息    查看全文
  • 作者:Takehito Okui (1)
    Yusuke Yamamoto (1)
    Shun Maekawa (2)
    Kazumichi Nagasawa (1)
    Yuka Yonezuka (1)
    Youichi Aizawa (2)
    Takashi Kato (1) (2)
  • 关键词:Erythropoiesis ; Liver ; Anemia ; Slow cycling cell ; Xenopus laevis
  • 刊名:Cell and Tissue Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:353
  • 期:1
  • 页码:153-164
  • 全文大小:930KB
  • 参考文献:1. Aizawa Y, Nogawa N, Kosaka N, Maeda Y, Watanabe T, Miyazaki H, Kato T (2005) Expression of erythropoietin receptor-like molecule in / Xenopus laevis and erythrocytopenia upon administration of its recombinant soluble form. J Biochem 138:167-75 CrossRef
    2. Barker JE, Keenan MA, Raphals L (1969) Development of the mouse hematopoietic system. II. Estimation of spleen and liver “stem-cell number. J Cell Physiol 74:51-6 CrossRef
    3. Baron MH (2003) Embryonic origins of mammalian hematopoiesis. Exp Hematol 31:1160-169 CrossRef
    4. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T (1991) Erythropoietin receptor characteristics on primary human erythroid cell. Blood 77:2583-590
    5. Burwell EL, Brickley BA, Finch CA (1953) Erythrocyte life span in small animals; comparison of two methods employing radioiron. Am J Physiol 172:718-24
    6. Cary R, Dobson S, Brooke I (2008) Concise international chemical assessment document 19. Phenylhydrazine. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation and the World Health Organization and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization, Geneva
    7. Chegini N, Aleporou V, Bell G, Hilder VA, Maclean N (1979) Production and fate of erythroid cells in anemic / Xenopus laevis. J Cell Sci 35:403-15 CrossRef
    8. Chou S, Lodish HF (2010) Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc Natl Acad Sci USA 107:7799-804 CrossRef
    9. Connor J, Pak CC, Schroit AJ (1994) Exposure of phosphatidylserine in the outer leaflet of human red blood cells. J Biol Chem 269:2399-404
    10. Coosemans V, Hadji-Azimi I (1986) Partial characterization of different cell types found in the / Xenopus laevis lymphoreticular tumor based on the presence or absence of surface immunoglobulins and Fc molecules. Dev Comp Immunol 10:547-59 CrossRef
    11. Criswell KA, Sulkanen AP, Hochbaum AF, Bleavins MR (2000) Effects of phenylhydrazine or phlebotomy on peripheral blood, bone marrow and erythropoietin in Wistar rats. J Appl Toxicol 20:25-4 CrossRef
    12. de Abreu Manso PP, de Brito-Gitirana L, Pelajo-Machado M (2009) Localization of hematopoietic cells in the bullfrog ( / Lithobates catesbeianus). Cell Tissue Res 337:301-12 CrossRef
    13. Erslev A (1953) Humoral regulation of red cell production. Blood 8:349-57
    14. Gong Q, Jiang H, Wei X, Ling J, Wang J (2010) Expression of erythropoietin and erythropoietin receptor in human dental pulp. J Endod 36:1972-977 CrossRef
    15. Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527-37
    16. Iscove NN (1977) The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet 10:323-34
    17. Jain SK (1985) In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 76:281-86 CrossRef
    18. Johnson GR, Barker DC (1985) Erythroid progenitor cells and stimulating factors during murine embryonic and fetal development. Exp Hematol 13:200-08
    19. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109-121 CrossRef
    20. Koury ST, Bondurant MC, Koury MJ, Semenza GL (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77:2497-503
    21. Lehrer MS, Sun TT, Lavker RM (1998)Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation.J Cell Sci 111:2867-875
    22. Maekawa S, Iemura H, Kuramochi Y, Nogawa-Kosaka N, Nishikawa H, Okui T, Aizawa Y, Kato T (2012) Hepatic confinement of newly-produced erythrocytes caused by low-temperature exposure in / Xenopus laevis. J Exp Biol 215:3087-095 CrossRef
    23. Medlock ES, Haar JL (1983) The liver hemopoietic environment. I. Developing hepatocytes and their role in fetal hemopoiesis. Anat Rec 207:31-1 CrossRef
    24. Naets JP (1960) The role of the kidney in the production of the erythropoietic factor. Blood 16:1770-776
    25. Nogawa-Kosaka N, Hirose T, Kosaka N, Aizawa Y, Nagasawa K, Uehara N, Miyazaki H, Kato T (2010) Structural and biological properties of erythropoietin in / Xenopus laevis. Exp Hematol 38:363-72 CrossRef
    26. Nogawa-Kosaka N, Sugai T, Nagasawa K, Tanizaki Y, Meguro M, Aizawa Y, Maekawa S, Adachi M, Kuroki R, Kato T (2011) Identification of erythroid progenitors induced by erythropoietic activity in / Xenopus laevis. J Exp Biol 214:921-27 CrossRef
    27. Reissmann KR, Nomura T, Gunn RW, Brosius F (1960) Erythropoietic response to anemia or erythropoietin injection in uremic rats with or without functioning renal tissue. Blood 16:1411-423
    28. Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ (2008) Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111:1700-708 CrossRef
    29. Sasaki K, Sonoda Y (2000) Histometrical and three-dimentional analyses of liver hematopoiesis in the mouse embryo. Arch Histol Cytol 63:137-46 CrossRef
    30. Sawada K, Krantz SB, Kans JS, Dessypris EN, Sawyer S, Glick AD, Civin CI (1987) Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest 80:357-66 CrossRef
    31. Sprog?e-Jakobsen S, Sprog?e-Jakobsen U (1997) The weight of the normal spleen. Forensic Sci Int 22:215-23 CrossRef
    32. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977-88 CrossRef
    33. Tanaka Y (1976) Architecture of the marrow vasculature in three amphibian species and its significance in hematopoietic development. Am J Anat 145:485-97 CrossRef
    34. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451-61 CrossRef
    35. Toth B, Fischl A, Scholz C, Kunze S, Friese K, Jeschke U (2008) Erythropoietin and erythropoietin receptor expression in normal and disturbed pregnancy. Eur J Obstet Gynecol Reprod Biol 140:192-00 CrossRef
    36. Wen TC, Rogido M, Genetta T, Sola A (2004) Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain. Neurosci Lett 355:165-68 CrossRef
    37. Wiechmann AF, Wirsig-Wiechmann C (2003) Color atlas of / Xenopus laevis histology. Kluwer Academic, Dordrecht CrossRef
    38. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836-41 CrossRef
  • 作者单位:Takehito Okui (1)
    Yusuke Yamamoto (1)
    Shun Maekawa (2)
    Kazumichi Nagasawa (1)
    Yuka Yonezuka (1)
    Youichi Aizawa (2)
    Takashi Kato (1) (2)

    1. Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University, TWIns Building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
    2. Department of Biology, School of Education, Waseda University, TWIns Building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
  • ISSN:1432-0878
文摘
Erythropoiesis occurs in the African clawed frog, Xenopus laevis and is mediated by erythropoietin (xlEPO), a primary regulator of this process. Previously, we have shown that the xlEPO receptor (xlEPOR), which is expressed by erythroid progenitors that respond to xlEPO, is found predominantly in the liver. The aim of the present study was to determine the dynamics of erythropoiesis in the livers of normal and anemic X. laevis by identifying the number and precise location of mature and immature erythrocytes. We quantified mature and immature erythrocyte numbers by o-dianisidine staining or immunohistochemistry and investigated the dynamics of erythropoiesis in normal, acute hemolytic and blood-loss states by in vivo cell proliferation assays with 5-bromo-2-deoxyuridine (BrdU). We detected 0.12×108 xlEPOR+ BrdU+ cells in the liver of the normal X. laevis at 24?h after BrdU injection. Frogs presenting with acute hemolytic anemia and pancytopenia show a 10-fold increase in the number of xlEPOR+/BrdU+ cells (approximately 1.30×108 cells) in the liver. The xlEPOR+ cells are found predominantly on the inner wall of hepatic sinusoids. Hematopoietic progenitors that undergo slow cell cycling were also observed in the hepatic sinusoids. This study clarifies the rate of production of mature and immature erythrocytes per day in the liver of X. laevis and the way that these cell numbers change in response to anemia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700