Which factors affect phytoplankton biomass in shallow eutrophic lakes?
详细信息    查看全文
  • 作者:Gbor Borics (1)
    Levente Nagy (2)
    Stefan Miron (3)
    Istvn Grigorszky (4)
    Zsolt L谩szl贸-Nagy (5)
    Balzs A. Lukcs (1)
    L谩szl贸 G-Tth (1)
    Gbor Vrb铆r (1)
  • 关键词:Phytoplankton ; Carpathian Basin ; Lake use ; Land use ; Nutrients
  • 刊名:Hydrobiologia
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:714
  • 期:1
  • 页码:93-104
  • 全文大小:331KB
  • 参考文献:1. Allan, R. J., J. D. H. Williams, S. R. Joshi & W. F. Warwick, 1980. Historical changes and relationship to internal loading of sediment phosphorus forms in hypertrophic prairie lakes. Journal of Environmental Quality 9: 199鈥?06. CrossRef
    2. Anon, 2002. Agricultural statistical year-book. Ministry of Agriculture and Rural Development, Budapest.
    3. Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweizerische Zeitschrift f眉r Hydrologie 49: 237鈥?48. CrossRef
    4. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Internationale Revue der gesampten Hydrobiologie 80: 519鈥?34. CrossRef
    5. Borics, G., I. Grigorszky, S. Szab & J. Padisk, 2000. Phytoplankton associations under changing pattern of bottom-up vs. top-down control in a small hypertrophic fishpond in East Hungary. Hydrobiologia 424: 79鈥?0. CrossRef
    6. Borics, G., B. Tthm茅r茅sz, B. A. Lukcs & G. Vrb铆r, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251鈥?62. CrossRef
    7. Boros, E., T. Nagy, C. Pigniczki, L. Kotymn, K. V.-Balogh & L. V枚r枚s, 2008. The effect of aquatic birds on the nutrient load and water quality of soda pans in Hungary. Acta Zoologica Hungarica 54(S1): 207鈥?24.
    8. Canfield, D. E., 1983. Prediction of chlorophyll / a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Water Resources Bulletin 19: 255鈥?62. CrossRef
    9. Carpenter, E. J. & D. G. Capone, 1983. Nitrogen in the marine environment. Academic Press, New York. 16.
    10. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Fish predation and herbivory can regulate lake ecosystem. Bioscience 35: 634鈥?39. CrossRef
    11. Catalano, M. J., M. S. Allen, M. H. Schaus, D. G. Buck & J. R. Beaver, 2010. Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia 655: 159鈥?69. CrossRef
    12. Chen, S. & S. A. Billings, 1992. Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control 56(2): 319鈥?46. CrossRef
    13. Clasen, J., & Bernhardt, H., 1980. OECD Eutrophication programme. Shallow lakes and reservoirs project. Final report. Water Research Centre. Marlow, UK.
    14. Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631鈥?41. CrossRef
    15. Dillon, P. J. & F. H. Rigler, 1974. The phosphorus鈥揷hlorophyll relationship in lakes. Limnology and Oceanography 28: 792鈥?95.
    16. EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, 22 December, L 327/1. European Commission, Brussels.
    17. Havens, K. E. & G. K. N眉rnberg, 2004. The phosphorus鈥揷hlorophyll relationship in lakes: potential influences of colour and mixing regime. Lake and Reservoir Management 20: 188鈥?96. CrossRef
    18. Huisman, J., 1999. Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80: 202鈥?10. CrossRef
    19. Hynes, H. B. N., 1975. The stream and its valley. Verhandlungen der Internationalen Vereinigung f眉r Theoretische und Angewandte Limnologie 19: 1鈥?5.
    20. ISO 10260., 1992. Water quality 鈥?measurement of biochemical parameters 鈥?spectrometric determination of the chlorophyll- / a concentration. ISO, Geneva.
    21. Janus, L. L., Vollenveider, R. A., 1981. Summary report. The OECD cooperative programme on eutrophication: Canadian contribution. Inland Waters Directorate Scientific Series I3 1鈥揝.
    22. Jeppesen, E., J. P. Jensen, M. S酶ndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes. Changes along a phosphorus gradient. Freshwater Biology 45: 201鈥?18. CrossRef
    23. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia 581: 269鈥?85. CrossRef
    24. Johnson, W. E. & J. R. Vallentyne, 1971. Rationale, background, and development of experimental lake studies in northwestern Ontario. Journal of the Fisheries Research Board of Canada 28: 123鈥?28. CrossRef
    25. Jones, C. & R. W. Bachmann, 1976. Prediction of phosphorus and chlorophyll levels in lakes. Journal of Water Pollution Control Federation 48: 2176鈥?182.
    26. Krasznai, E., G. Borics, G. Vrb铆r, A. Abonyi, J. Padisk, Cs. Dek & B. Tthm茅r茅sz, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639: 261鈥?69. CrossRef
    27. Leone, A., M. N. Ripa, V. Uricchio, J. Dek & Z. Vargay, 2009. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary鈥檚 main aquifer using DRASTIC and GLEAMS models. Journal of Environmental Management 90: 2969鈥?978. CrossRef
    28. Likens, G. E. (ed.), 1972. Nutrients and eutrophication. American Society of Limnology and Oceanography, Special Symposia 1: 1鈥?28.
    29. Meijer, M. L., 2000. Biomanipulation in the Netherlands: 15聽years of experience. Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Wastewater Treatment (RIZA), Lelystad, the Netherlands.
    30. N玫ges, P., T. N玫ges, L. Tuvikene, H. Smal, S. Ligeza, R. Kornijow, W. Peczula, E. B茅cares, F. Garc铆a-Criado, C. Alvarez-Carrera, C. Fernndez-Alez, C. Ferriol, M. R. Miracle, E. Vicente, S. Romo, E. van Donk, W. Van de Bund, J. P. Jensen, E. Gross, L. A. Hansson, M. Gyllstr枚m, M. Nyk盲nen, E. de Eyto, K. Irvine, D. Stephen, S. Collings & B. Moss, 2003. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia 506: 51鈥?8. CrossRef
    31. N眉rnberg, G. K., 1996. Trophic state of clear and colored, soft- and hard-water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12: 432鈥?47. CrossRef
    32. OECD, 1982. Eutrophication of waters monitoring assessment and control. Final report. OECD cooperative programme on monitoring of inland waters. OECD, Paris.
    33. Omernik, J. M., 1976. The influence of land use on stream nutrient levels. EPA 600/3-76-014. U.S. Environmental Protection Agency, Corvallis.
    34. Osborne, L. L. & M. J. Wiley, 1988. Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management 26: 9鈥?7.
    35. Plfai, I., 2001. Magyarorszg holtgai (Oxbow lakes in Hungary). Publication of the Hungarian Ministry of Transport and Water (in Hungarian), Budapest.
    36. Phillips, G., A. Kelly, J. A. Pitt, R. Sanderson & E. Taylor, 2005. The recovery of a very shallow eutrophic lake, 20聽years after the control of effluent derived phosphorus. Freshwater Biology 50: 1628鈥?638. CrossRef
    37. Phillips, G., O.-P. Pietil盲inen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll鈥搉utrient relationships of different lake types using a large European dataset. Aquatic Ecology 42(2): 213鈥?26. CrossRef
    38. Poik膩ne, S., M. H. Alves, C. Argillier, M. van den Berg, F. Buzzi, E. Hoehn, C. de Hoyos, I. Karottki, C. Laplace-Treyture, A. L. Solheim, J. Ortiz-Casas, I. Ott, G. Phillips, A. Pilke, J. Pdua, S. Remec-Rekar, U. Riedm眉ller, J. Schaumburg, M. L. Serrano, H. Soszka, D. Tierney, G. Urbanic & G. Wolfram, 2010. Defining chlorophyll- / a reference conditions in European lakes. Environmental Management 45: 1286鈥?298. CrossRef
    39. Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrient鈥揷hlorophyll relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1176鈥?182. CrossRef
    40. Rast, W., Lee, G. F., 1978. Summary analysis of the North American (U.S. portion) OECD eutrophication project: nutrient loading-lake response relationships and trophic state indices. US EPA, Ecological Research Series EPA600/3-78-008.
    41. Roberts, J., A. Chick, L. Oswald & P. Thompson, 1995. Effect of carp, / Cyprinus carpio L., an exotic benthivorous fish, on aquatic plants and water quality in experimental ponds. Marine and Freshwater Research 46(8): 1171鈥?180. CrossRef
    42. Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London.
    43. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. Limnology Research Centre, University of Minnesota 143: 1鈥?2.
    44. S酶ndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppsen, 2008. Lake restoration by fish removal: short- and longterm effects in 36 Danish lakes. Ecosystems 11: 1291鈥?305. CrossRef
    45. Syrett, P. J., 1981. Nitrogen metabolism of microalgae. In Platt, T. (ed.), Physiological bases of phytoplankton ecology. Bull. No. 210. Canadian Government Publishing Center, Hull: 182鈥?10.
    46. Szesztay, K., 1960. Water balance survey of lakes and river basins in Hungary. Eaux de Surface: IAHS. 51. Helsinki. 579鈥?93.
    47. Ttrai, I., G. Boros, A. I. Gy枚rgy, K. Mtys, J. Korponai, P. Pomogyi, M. Havasi & T. Kucserka, 2009. Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake. Hydrobiologia 620: 149鈥?61. CrossRef
    48. The MathWorks, Inc., 2000. 24 Prime Park Way, Natick, MA 01760, USA.
    49. Van de Bund, W. & E. Van Donk, 2002. Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: a synthesis of 15聽years of data from Lake Zwemlust. Freshwater Biology 47(12): 2380鈥?387. CrossRef
    50. Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Representative Organization for Economic Cooperation and Development, Paris, DAS/CSI/68.27, 192聽pp.; Annex, 21聽pp.; Bibliography, 61聽pp.
    51. Ward, A. K. & R. G. Wetzel, 1980. Interactions of light and nitrogen source among planktonic blue-green algae. Archiv f眉r Hydrobiologie 90: 1鈥?5.
  • 作者单位:Gbor Borics (1)
    Levente Nagy (2)
    Stefan Miron (3)
    Istvn Grigorszky (4)
    Zsolt L谩szl贸-Nagy (5)
    Balzs A. Lukcs (1)
    L谩szl贸 G-Tth (1)
    Gbor Vrb铆r (1)

    1. MTA Centre for Ecological Research, Department of Tisza River Research, Bem sqr. 18/c, Debrecen, 4026, Hungary
    2. Romanian Water Authority, Somes-Tisa Branch, Str. Vanatorului nr. 17, 400213, Cluj-Napoca, Romania
    3. Romanian Water Authority, Prut-Barlad Branch, Str. Th. Vascauteanu nr. 10, 700462, Iasi, Romania
    4. Department of Hydrobiology, Debrecen University, Egyetem sqr. 1, Debrecen, 4032, Hungary
    5. Environmental Protection, Nature Conservation and Water Authority, Lower-Tisza Region, Fels艖 Tisza-part 17, Szeged, 6721, Hungary
  • ISSN:1573-5117
文摘
The restoration and management of shallow, pond-like systems are hindered by limitations in the applicability of the well-known models describing the relationship between nutrients and lake phytoplankton biomass in higher ranges of nutrient concentration. Trophic models for naturally eutrophic small, shallow, endorheic lakes have not yet been developed, even though these are the most frequent standing waters in continental lowlands. The aim of this study was to identify variables that can be considered as main drivers of phytoplankton biomass and to build a predictive model. The influence of potential drivers of phytoplankton biomass (nutrients, other chemical variables, land use, lake use and lake depth) from 24 shallow eutrophic lakes was tested using data in the Pannonian ecoregion (Hungary and Romania). By incorporating lake depth, TP, TN and lake use as independent and Chl-a as dependent variables into different models (multiple regression model, GLM and multilayer perception model) predictive models were built. These models explained >50% of the variance. Although phytoplankton biomass in small, shallow, enriched lakes is strongly influenced by stochastic effects, our results suggest that phytoplankton biomass can be predicted by applying a multiple stressor approach, and that the model results can be used for management purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700