Endogenous and Exogenous Calcium Involved in the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide
详细信息    查看全文
  • 作者:Guizhi Fan ; Duan Jian ; Meiling Sun ; Yaguang Zhan…
  • 关键词:Hydrogen sulfide (H2S) ; Ca2+ ; Betulin ; Phellinus linteus ; Submerged culture
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:3
  • 页码:594-603
  • 全文大小:2,466 KB
  • 参考文献:1.Elisashvili, V. (2012). Submerged cultivation of medicinal mushrooms: bioprocesses and products. International Journal of Medicinal Mushrooms, 14(3), 211–239.CrossRef
    2.Zhang, J. M., Zhong, J. J., & Geng, A. N. (2014). Improvement of ganoderic acid production by fermentation of Ganoderma lucidum with cellulase as an elicitor. Process Biochemistry, 49(10), 1580–1586.CrossRef
    3.Reis, F. S., Barreira, J. C. M., Calhelha, R. C., Griensven, L. J. I. D., Ćirić, A., Glamočlija, J., Soković, M., & Ferreira, I. C. F. R. (2014). Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT–Food Science and Technology, 58(2), 478–485.
    4.Lee, Y. S., Kim, Y. H., Shin, E. K., Kim, D. H., Lim, S. S., Lee, J. Y., & Kim, J. K. (2010). Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. Journal of Ethnopharmacology, 131(1), 56–62.CrossRef
    5.Alakurtti, S., Mäkelä, T., Koskimies, S., & Yli-Kauhaluoma, J. (2006). Pharmacological properties of the ubiquitous natural product betulin. European Journal of Pharmaceutical Sciences, 29(1), 1–13.CrossRef
    6.Bori, I. D., Hung, H. Y., Qian, K., Chen, C. H., Morris-Natschke, S. L., & Lee, K. H. (2012). Anti-AIDS agents 88. Anti-HIV conjugates of betulin and betulinic acid with AZT prepared via click chemistry. Tetrahedron Letters, 53(15), 1987–1989.CrossRef
    7.Zhao, F. Q., Mai, Q. Q., Ma, J. H., Xu, M., Wang, X., Cui, T. T., Qiu, F., & Han, G. (2015). Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia, 101, 34–40.CrossRef
    8.Sun, M. L. (2014). Preliminary study on mechanism of triterpenoids accumulation induced by hydrogen sulfide in Phellinus mycelium. Master thesis, Northeast Forestry University, Harbin, China.
    9.Kabil, O., Vitvitsky, V., & Banerjee, R. (2014). Sulfur as a signaling nutrient through hydrogen sulfide. Annual Review Nutration, 34, 171–205.CrossRef
    10.Chen, A. W., Zeng, G. M., Chen, G. Q., Zhang, C., Yan, M., Shang, C., Hu, X. J., Lu, L. H., Chen, M., Guo, Z., & Zuo, Y. N. (2014). Hydrogen sulfide alleviates 2, 4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium. Chemosphere, 109, 208–212.CrossRef
    11.Hancock, J. T., & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: team player or referee? Plant Physiology and Biochemistry, 78, 37–42.CrossRef
    12.Fang, H., Jing, T., Liu, Z., Zhang, L., Jin, Z., & Pei, Y. (2014). Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium, 56(6), 472–481.CrossRef
    13.Christou, A., Manganaris, G. A., Papadopoulos, I., & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany, 64(7), 1953–1966.CrossRef
    14.Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61, 593–620.CrossRef
    15.Tuteja, N., & Mahajan, S. (2007). Calcium signaling network in plants. Plant Signal Behavior, 2(2), 79–85.CrossRef
    16.Kudla, J., Batistič, O., & Hashimoto, K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell, 22, 541–563.CrossRef
    17.Guo, H. B., Zhu, N., Deyholos, M. K., Liu, J., Zhang, X. R., & Dong, J. E. (2015). Calcium mobilization in salicylic acid-induced salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Applied Biochemistry and Biotechnology, 175, 2689–2702.CrossRef
    18.Munarona, L., Avanzatoa, D., Mocciad, F., & Mancardie, D. (2013). Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 53(2), 77–84.CrossRef
    19.Fan, G. Z., Liu, Y. T., Wang, X. D., & Zhan, Y. G. (2014). Cross-talk of polyamines and nitric oxide in endophytic fungus-induced betulin production in Betula platyphylla plantlets. Trees, 28, 635–641.CrossRef
    20.Liao, W. B., Zhang, M. L., Huang, G. B., & Yu, J. H. (2012). Ca2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold. Journal of Plant Growth Regulation, 31, 253–264.CrossRef
    21.Wasser, S. P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology, 89, 1323–1332.CrossRef
    22.Zhua, L. W., Zhong, J. J., & Tang, Y. J. (2008). Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochemistry, 43(12), 1359–1370.CrossRef
    23.Xu, Y. N., & Zhong, J. J. (2012). Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnology Advances, 30(6), 1301–1308.CrossRef
    24.Dörnenburg, H., & Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17(8), 674–684.CrossRef
    25.Patel, H., & Krishnamurthy, R. (2013). Elicitors inplant tissue culture. Journal of Pharmacognosy and Phytochemistry, 2(2), 60–65.
    26.Lecourieux, D., Ranjeva, R., & Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytologist, 171, 249–269.CrossRef
    27.Martins, T. V., Evans, M. J., Woolfenden, H. C., & Morris, R. J. (2013). Towards the physics of calcium signalling in plants. Plants, 2, 541–588.CrossRef
    28.Yang, T. B., Peng, H., & Bauchan, G. R. (2014). Functional analysis of tomato calmodulin gene family during fruit development and ripening. Horticulture Research. doi:10.​1038/​hortres.​2014.​57 .
    29.Wen, R. B., Sui, Z. H., Bao, Z. M., Zhou, W., & Wang, C. Y. (2014). Isolation and characterization of calmodulin gene of Alexandrium catenella (Dinoflagellate) and its performance in cell growth and heat stress. Journal of Ocean University China, 13(2), 290–296.CrossRef
  • 作者单位:Guizhi Fan (1) (2)
    Duan Jian (1)
    Meiling Sun (1)
    Yaguang Zhan (1)
    Feifei Sun (1)

    1. College of Life Science, Northeast Forestry University, Harbin, People’s Republic of China
    2. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Using pharmacological and biochemical approaches, Ca2+ involved in the betulin production in mycelia of Phellinus linteus induced by hydrogen sulfide (H2S) were investigated. The results showed that 2 mM H2S donor NaHS or 10 mM CaCl2 was found to enhance the betulin content in the mycelia of Phellinus to the maximum, which were 112.43 and 93.24 % higher than that in the control, respectively. Further, NaHS and CaCl2 co-treatment also showed positive outcome, which were 128.95 or 24.52 % higher than that in the control or NaHS treatment. At the same time, NaHS also enhanced the content of Ca2+ and CaM. But, the above positive inductive effects for Ca2+, CaM, and betulin production can be blocked with either Ca2+ channel blocker (LaCl3, 2-aminoethoxydiphenyl borate) or Ca2+ chelator (ethylenediaminetetraacetic acid (EDTA)). Among of them, betulin content was reduced 35.06 % by NaHS and EGTA to the minimum, and this reduction could be reversed by the application of CaCl2 (NaHS + EGTA + CaCl2). From above results, it can be concluded that endogenous and exogenous calcium involved in the betulin production from submerged culture of P. linteus induced by hydrogen sulfide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700