Effects of hyaluronic acid and CD44 interaction on the proliferation and invasiveness of malignant pleural mesothelioma
详细信息    查看全文
  • 作者:Takeshi Hanagiri (1)
    Shinji Shinohara (1)
    Masaru Takenaka (1)
    Yoshiki Shigematsu (1)
    Manabu Yasuda (1)
    Hidehiko Shimokawa (1)
    Yoshika Nagata (1)
    Makoto Nakagawa (1)
    Hidetaka Uramoto (1)
    Tomoko So (1)
    Fumihiro Tanaka (1)
  • 关键词:Malignant pleural mesothelioma ; Hyaluronic acid ; CD44 ; Proliferation
  • 刊名:Tumor Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:33
  • 期:6
  • 页码:2135-2141
  • 全文大小:282KB
  • 参考文献:1. Peto J, Hodgson JT, Matthews FE, et al. Continuing increase in mesothelioma mortality in Britain. Lancet. 1995;345:535-. CrossRef
    2. Peto J, Decarli A, La Vecchia C, Levi F, Negri E. The European mesothelioma epidemic. Br J Cancer. 1999;79:666-2. CrossRef
    3. Gemba K, Fujimoto N, Kato K, Aoe K, Takeshima Y, Inai K, et al. National survey of malignant mesothelioma and asbestos exposure in Japan. Cancer Sci. 2012;103:483-0. CrossRef
    4. Murayama T, Takahashi K, Natori Y, Kurumatani N. Estimation of future mortality from pleural malignant mesothelioma in Japan based on an age-cohort model. Am J Ind Med. 2006;49:1-. CrossRef
    5. Marinaccio A, Scarselli A, Binazzi A, et al. Asbestos related diseases in Italy: an integrated approach to identify unexpected professional or environmental exposure risks at municipal level. Int Arch Occup Environ Health. 2008;81:993-001. CrossRef
    6. Maule MM, Magnani C, Dalmasso P, Mirabelli D, Merletti F, Biggeri A. Modeling mesothelioma risk associated with environmental asbestos exposure. Environ Health Perspect. 2007;115:1066-1. CrossRef
    7. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636-4. CrossRef
    8. J?nne PA, Wozniak AJ, Belani CP, Keohan ML, Ross HJ, Polikoff JA, et al. Pemetrexed expanded access program investigators. Pemetrexed alone or in combination with cisplatin in previously treated malignant pleural mesothelioma: outcomes from a phase IIIB expanded access program. J Thorac Oncol. 2006;1:506-2. CrossRef
    9. Sugarbaker DJ, Flores RM, Jaklitsch MT, Richards WG, Strauss GM, Corson JM, et al. Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients. J Thorac Cardiovasc Surg. 1999;117:54-3. CrossRef
    10. Thylén A, Hjerpe A, Martensson G. Hyaluronan content in pleural fluid as a prognostic factor in patients with malignant pleural mesothelioma. Cancer. 2001;92:1224-0. CrossRef
    11. Hillerdal G, Lindqvist U, Engstr?m-Laurent A. Hyaluronan in pleural effusions and in serum. Cancer. 1991;67:2410-. CrossRef
    12. Laurent TC, Laurent UB, Fraser JR. Functions of hyaluronan. Ann Rheum Dis. 1995;54:429-2. CrossRef
    13. Marhaba R, Z?ller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35:211-1. CrossRef
    14. Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, et al. Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci. 2006;97:387-4. CrossRef
    15. Shigematsu Y, Hanagiri T, Kuroda K, Baba T, Mizukami M, Ichiki Y, et al. Malignant mesothelioma-associated antigens recognized by tumor-infiltrating B cells and the clinical significance of the antibody titers. Cancer Sci. 2009;100:1326-4. CrossRef
    16. Baas P, Schouwink H, Zoetmulder FA. Malignant pleural mesothelioma. Ann Oncol. 1998;9:139-9. CrossRef
    17. Welker L, Müller M, Holz O, Vollmer E, Magnussen H, J?rres RA. Cytological diagnosis of malignant mesothelioma—improvement by additional analysis of hyaluronic acid in pleural effusions. Virchows Arch. 2007;450:455-1. CrossRef
    18. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an overview. Immunol Cell Biol. 1996;74:A1-. CrossRef
    19. Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem. 2004;279:18679-7. CrossRef
    20. Li Y, Li L, Brown TJ, Heldin P. Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int J Cancer. 2007;120:2557-7. CrossRef
    21. Twarock S, Tammi MI, Savani RC, Fischer JW. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol Chem. 2010;285:23276-4. CrossRef
    22. Wang SJ, Bourguignon LY. Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am J Pathol. 2011;178:956-3. CrossRef
    23. Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan–CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase Cε–Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem. 2006;281:14026-0. CrossRef
    24. Stamenkovic I, Yu Q. Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol. 2009;129:1321-. CrossRef
    25. Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004;95(12):930-. CrossRef
    26. Goebeler M, Kaufmann D, Br?cker EB, Klein CE. Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J Cell Sci. 1996;109:1957-4.
    27. Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939-8. CrossRef
    28. Richter U, Wicklein D, Geleff S, Schumacher U. The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation. Histochem Cell Biol. 2012;137:687-5. CrossRef
    29. Li CZ, Liu B, Wen ZQ, Li HY. Inhibition of CD44 expression by small interfering RNA to suppress the growth and metastasis of ovarian cancer cells in vitro and in vivo. Folia Biol. 2008;54:180-.
    30. Sugahara KN, Hirata T, Hayasaka H, Stern R, Murai T, Miyasaka M. Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments. J Biol Chem. 2006;281:5861-. CrossRef
    31. Sohara Y, Ishiguro N, Machida K, Kurata H, Thant AA, Senga T, et al. Hyaluronan activates cell motility of v-Src-Transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide3-kinase-Akt in a tumor-specific manner. Mol Biol Cell. 2001;12:1859-8.
  • 作者单位:Takeshi Hanagiri (1)
    Shinji Shinohara (1)
    Masaru Takenaka (1)
    Yoshiki Shigematsu (1)
    Manabu Yasuda (1)
    Hidehiko Shimokawa (1)
    Yoshika Nagata (1)
    Makoto Nakagawa (1)
    Hidetaka Uramoto (1)
    Tomoko So (1)
    Fumihiro Tanaka (1)

    1. Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, 807, Japan
  • ISSN:1423-0380
文摘
Hyaluronic acid (HA) has been proposed as a biochemical marker of malignant pleural mesothelioma (MPM). The present study focused on the implications of HA and CD44 interaction in the proliferation and invasiveness of MPM. The proliferation and invasive activity was evaluated in two human mesothelioma cell lines, ACC-MESO-1 and K921MSO, by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the transwell chamber model. The knockdown of CD44 gene expression was accomplished by transfection of the cells with small interfering RNA. Flow cytometry revealed that both the ACC-MESO-1 and K921MSO cell lines highly expressed CD44. Treatment with HA enhanced the proliferation in both mesothelioma cell lines in comparison to cells without HA treatment. The treatment with HA (25?μg/ml) also significantly upregulated the invasion of both types of cells. The silencing of CD44 significantly abrogated the effect of HA treatment on the proliferation of ACC-MESO-1 cells and significantly suppressed the proliferation of K921MSO cells. HA–CD44 binding is important for the migration and proliferation of mesothelioma cells. Therefore, the HA–CD44 interaction is a potentially useful therapeutic target in MPM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700