Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics
详细信息    查看全文
  • 作者:Wen-Feng Liang (1) (2) (3)
    Ding-Quan Xiao (1)
    Jia-Gang Wu (1)
    Wen-Juan Wu (1)
    Jian-Guo Zhu (1)
  • 关键词:lead ; free piezoelectric ceramic ; (K ; Na)NbO3 (KNN) ; mechanism of hardening effect ; mechanical quality factor Q m ; domain stabilization
  • 刊名:Frontiers of Materials Science
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:8
  • 期:2
  • 页码:165-175
  • 全文大小:
  • 参考文献:1. Gerthsen P, H?rdtl K H, Schmidt N A. Correlation of mechanical and electrical losses in ferroelectric ceramics. Journal of Applied Physics, 1980, 51(2): 1131 CrossRef
    2. Uchino K, Zheng J H, Chen Y H, et al. Loss mechanisms and high power piezoelectrics. Journal of Materials Science, 2006, 41(1): 217-28 CrossRef
    3. Zhang S, Xia R, Shrout T R. Lead-free piezoelectric ceramics vs PZT? Journal of Electroceramics, 2007, 19(4): 251-57 CrossRef
    4. R?del J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153-177 CrossRef
    5. Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. Journal of Materials Science, 2009, 44(19): 5408-419 CrossRef
    6. Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113-26 CrossRef
    7. H?rdtl K H. Electrical and mechanical losses in ferroelectric ceramics. Ceramics International, 1982, 8(4): 121-27 CrossRef
    8. Lin D, Kwok K W, Chan H L W. Double hysteresis loop in Cudoped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters, 2007, 90(23): 232903 (3 pages) CrossRef
    9. Gao Y, Uchino K, Viehland D. Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias. Journal of Applied Physics, 2007, 101 (5): 054109 (6 pages) CrossRef
    10. Lin D, Kwok KW, Chan H LW. Double hysteresis loop and aging effect in K0.5Na0.5NbO3-K5.4Cu1.3Ta10O9 lead-free ceramics. Journal of the American Ceramic Society, 2009, 92(6): 1362-365 CrossRef
    11. Carl K, Hardtl K H. Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics, 1977, 17(1): 473-86 CrossRef
    12. Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Materials, 2004, 3(2): 91-4 CrossRef
    13. Zhang L, Ren X. Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging. Physical Review B: Condensed Matter and Materials Physics, 2006, 73: 094121 CrossRef
    14. Tan Q, Li J, Viehland D. Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Applied Physics Letters, 1999, 75(3): 418-20 CrossRef
    15. Zhang Y, Li J, Fang D. Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal. Physical Review B: Condensed Matter and Materials Physics, 2010, 82: 064103 CrossRef
    16. Takao H, Saito Y, Aoki Y, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. Journal of the American Ceramic Society, 2006, 89(6): 1951-956 CrossRef
    17. Wang H-Q, Dai Y-J, Zhang X-W. Microstructure and hardening mechanism of K0.5Na0.5NbO3 lead-free ceramics with CuO doping sintered in different atmospheres. Journal of the American Ceramic Society, 2012, 95(4): 1182-184 CrossRef
    18. Park H-Y, Seo I-T, Choi M-K, et al. Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)-(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2008, 104(3): 034103 (7 pages) CrossRef
    19. Su S, Zuo R, Wang X, et al. Sintering, microstructure and piezoelectric properties of CuO and SnO2 co-modified sodium potassium niobate ceramics. Materials Research Bulletin, 2010, 45 (2): 124-28 CrossRef
    20. Park B C, Hong I K, Jang H D, et al. Highly enhanced mechanical quality factor in lead-free (K0.5Na0.5)NbO3 piezoelectric ceramics by co-doping with K5.4Cu1.3Ta10O29 and CuO. Materials Letters, 2010, 64(14): 1577-579 CrossRef
    21. Li E, Kakemoto H, Wada S, et al. Enhancement of / Q m by codoping of Li and Cu to potassium sodium niobate lead-free ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(5): 980-87 CrossRef
    22. Park H Y, Seo I T, Choi J H, et al. Low-temperature sintering and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2010, 93(1): 36-9 CrossRef
    23. Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921-927 CrossRef
    24. Lin D, Kwok K W, Chan H L W. Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics. Journal of Applied Physics, 2008, 103(6): 064105 (5 pages) CrossRef
    25. Lim J B, Zhang S, Lee H J, et al. Shear-mode piezoelectric properties of modified-(K,Na)NbO3 ceramics for “hard-lead-free materials. Journal of the American Ceramic Society, 2010, 93(9): 2519-521 CrossRef
    26. Lv Y G, Wang C L, Zhang J L, et al. Modified (K0.5Na0.5)-(Nb0.9Ta0.1)O3 ceramics with high / Q m. Materials Letters, 2008, 62 (19): 3425-427 CrossRef
    27. Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190-196 CrossRef
    28. Yang M-R, Tsai C-C, Hong C-S, et al. Piezoelectric and ferroelectric properties of CN-doped K0.5Na0.5NbO3 lead-free ceramics. Journal of Applied Physics, 2010, 108(9): 094103 (5 pages) CrossRef
    29. K?rbel S, Marton P, Els?sser C. Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Physical Review B: Condensed Matter and Materials Physics, 2010, 81: 174115 CrossRef
    30. Shigemi A, Wada T. Evaluations of phases and vacancy formation energies in KNbO3 by first-principles calculation. Japanese Journal of Applied Physics, 2005, 44(11): 8048-054 CrossRef
    31. Zhen Y, Li J F. Abnormal grain growth and new core-shell structure in (K,Na)NbO3-based lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2007, 90(11): 3496-502 CrossRef
    32. Zuo R, Ye C, Fang X, et al. Processing and piezoelectric properties of (Na0.5K0.5)0.96Li0.04(Ta0.1Nb0.9)1 ? / x CuxO3 ?3 / x/2 lead-free ceramics. Journal of the American Ceramic Society, 2008, 91(3): 914-17 CrossRef
  • 作者单位:Wen-Feng Liang (1) (2) (3)
    Ding-Quan Xiao (1)
    Jia-Gang Wu (1)
    Wen-Juan Wu (1)
    Jian-Guo Zhu (1)

    1. Department of Materials Science, Sichuan University, Chengdu, 610064, China
    2. CAEP Key Laboratory of Neutron Physics, Mianyang, 621900, China
    3. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
  • ISSN:2095-0268
文摘
The origin of a high mechanical quality in CuO-doped (K, Na)NbO3-based ceramics is addressed by considering the correlations between the lattice positions of Cu ions and the hardening effect in K0.48Na0.52 + xNbO3-0.01CuO ceramics. The Cu ions simultaneously occupy K/Na and Nb sites of these ceramics with x = 0 and 0.02, only occupy the K/Na site of the ceramics with x = ?.02, and mostly form a secondary phase of the ceramics with x = ?.05. The Cu ions lead to the hardening of ceramics with an increase of E C and Q m by only occupying the K/Na site, together with the formation of double hysteresis loops in un-poled compositions. A defect model is proposed to illuminate the origin of a high Q m value, that is, the domain stabilization is dominated by the content of relatively mobile O2?/sup> ions in the ceramics, which has a weak bonding with CuK/Na defects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700