Mini-chunk biochar supercapacitors
详细信息    查看全文
  • 作者:Lei Zhang ; Junhua Jiang ; Nancy Holm ; Fangling Chen
  • 关键词:Supercapacitor ; Biochar ; Mini ; chunk electrode ; Thin ; film electrode ; Maple wood
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:44
  • 期:10
  • 页码:1145-1151
  • 全文大小:958 KB
  • 参考文献:1. Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanal 26:30-1 CrossRef
    2. Adhyapak P, Maddanimath T, Pethkar S, Chandwadkar A, Negi Y, Vijayamohanan K (2002) Application of electrochemically prepared carbon nanofibers in supercapacitors. J Power Sources 109:105-10 CrossRef
    3. Mayer S, Pekala R, Kaschmitter J (1993) The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc 140:446-51 CrossRef
    4. Yoshida A, Nonaka S, Aoki I, Nishino A (1996) Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors. J Power Sources 60:213-18 CrossRef
    5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat mater 7:845-54 CrossRef
    6. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Env Sci 7:867-84 CrossRef
    7. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472-477 CrossRef
    8. Xu X, Liang J, Zhou H, Ding S, Yu D (2014) The preparation of hierarchical tubular structures comprised of NiO nanosheets with enhanced supercapacitive performance. RSC Adv 4:3181-187 CrossRef
    9. Xu X, Zhou H, Ding S, Li J, Li B, Yu D (2014) The facile synthesis of hierarchical NiCoO2 nanotubes comprised ultrathin nanosheets for supercapacitors. J Power Sources 267:641-47 CrossRef
    10. Wang YG, Li HQ, Xia YY (2006) Ordered whisker-like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619-623 CrossRef
    11. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774-785 CrossRef
    12. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50:4174-181 CrossRef
    13. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99-07 CrossRef
    14. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212-16 CrossRef
    15. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casa?-Pastor N, Lira-Cantú M (2003) Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5:149-53 CrossRef
    16. Mdoe J, Mkayula L (2002) Preparation and characterization of activated carbons from rice husks and shells of palm fruits. Tanzan J Sci 28:131-42
    17. Chen M, Kang X, Wumaier T, Dou J, Gao B, Han Y, Xu G, Liu Z, Zhang L (2013) Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Electrochem 17:1005-012 CrossRef
    18. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547-62 CrossRef
    19. Dobele G, Dizhbite T, Gil M, Volperts A, Centeno T (2012) Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture. Biomass Bioenergy 46:145-54 CrossRef
    20. Azargohar R, Dalai A (2006) Biochar as a precursor of activated carbon. In: Twenty-seventh symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 762-73
    21. Kitano M, Arai K, Kodama A, Kousaka T, Nakajima K, Hayashi S, Hara M (2009) Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal Lett 131:242-49 CrossRef
    22. Teng H, Yeh TS, Hsu LY (1998) Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36:1387-395 CrossRef
    23. Liu MC, Kong LB, Zhang P, Luo YC, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443-48 CrossRef
    24. Jin H, Wang X, Gu Z, Polin J (2013) Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J Power Sources 236:285-92 CrossRef
    25. Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481-89 CrossRef
    26. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232-36 CrossRef
    27. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937-50 CrossRef
    28. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480-99 CrossRef
  • 作者单位:Lei Zhang (1) (2)
    Junhua Jiang (1)
    Nancy Holm (1)
    Fangling Chen (2)

    1. Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
    2. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
  • ISSN:1572-8838
文摘
Biochar prepared from the pyrolysis of maple wood was studied as supercapacitor electrode materials. Three kinds of electrodes were fabricated: mini-chunk electrodes, thin-film electrodes, and large-disk-chunk electrodes. Their capacitive behaviors were studied using cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The mini-chunk supercapacitor shows an electrochemical behavior similar to the supercapacitor using the thin-film electrodes. It exhibits outstanding performance characteristic of a high specific capacitance of approximately 32?F?g? and a high stability without obvious capacitance decays upon 2,600 potential cycles. This indicates that the mini-chunk supercapacitor can be used as an mF-scale power source for electronic device applications. Moreover, the mini-chunk electrode provides a simple and fast technique to evaluate biochar materials used as potentially high-performance, low-cost, and environmental friendly supercapacitor electrodes without the need of binder and complicated fabrication procedures. However, the supercapacitor using large-disk-chunk biochar electrodes shows lower specific capacitive performance due to the high ohmic resistance stemming from long tubular structures within biochar.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700