miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron deficient Citrus sinensis
详细信息    查看全文
  • 作者:Chengquan Yang ; Tao Liu ; Fuxi Bai ; Nannan Wang…
  • 关键词:Corky split vein ; Anatomy ; miRNAome ; Lignification ; Cell division ; Orderless stage transition
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:290
  • 期:5
  • 页码:1639-1657
  • 全文大小:1,902 KB
  • 参考文献:Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563鈥?570PubMed
    Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207鈥?21CrossRef PubMed
    Barcel贸 AR (1997) Lignification in plant cell walls. Int Rev Cytol 176:87鈥?32CrossRef
    Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835鈥?839CrossRef PubMed
    Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible W-R, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23:915鈥?26CrossRef PubMed
    Cajuste JF, Lafuente MT (2007) Ethylene-induced tolerance to non-chilling peel pitting as related to phenolic metabolism and lignin content in 鈥楴avelate鈥?fruit. Postharvest Biol Technol 45:193鈥?03CrossRef
    Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vat茅n A, Thitamadee S (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316鈥?21PubMed Central CrossRef PubMed
    脟etin E (2009) Effects of boron stress on the anatomical structure of Medicago sativa L. IUFS J Biol 68:27鈥?5
    Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Sci Signal 303:2022鈥?025
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMed Central CrossRef PubMed
    Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946鈥?51CrossRef PubMed
    Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160鈥?65CrossRef PubMed
    Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544鈥?49CrossRef PubMed
    CunCang J, YunHua W, GuiDong L, Ying X, Shuang P, BaLian Z, QingLuan Z (2009) Effect of boron on the leaf etiolation and fruit drop of Newhall navel orange in southern Jiangxi. Plant Nutr Fertil Sci 15:656鈥?11
    Dean R, Ku膰 J (1987) Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber. Physiol Mol Plant P 31:69鈥?1CrossRef
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garc铆a JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033鈥?037CrossRef PubMed
    Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038鈥?043CrossRef PubMed
    Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155:423鈥?30CrossRef PubMed
    Gandikota M, Birkenbihl RP, H枚hmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3鈥?UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683鈥?93CrossRef PubMed
    Garg O, Sharma A, Kona GR (1979) Effect of boron on the pollen vitality and yield of rice plants (Oryza sativa L. var. Jaya). Plant Soil 52:591鈥?94CrossRef
    Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. P Natl Acad Sci 105:803鈥?08CrossRef
    Gupta UC, Jame Y, Campbell C, Leyshon A, Nicholaichuk W (1985) Boron toxicity and deficiency: a review. Can J Soil Sci 65:381鈥?09CrossRef
    Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P (2011) Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 23:54鈥?8PubMed Central CrossRef PubMed
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347. http://鈥媤ww.鈥媍abdirect.鈥媜rg/鈥媋bstracts/鈥?9500302257.鈥媓tml;jsessionid=鈥?1CFE13CEF4FFD33鈥婤D6D3D3CB052E64D鈥?/span>
    Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C (2011) LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156:1101鈥?115PubMed Central CrossRef PubMed
    Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117鈥?129CrossRef PubMed
    Jung J-H, Park C-M (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327鈥?338CrossRef PubMed
    Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet 7:e1002021. doi:10.鈥?371/鈥媕ournal.鈥媝gen.鈥?002021 PubMed Central CrossRef PubMed
    Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA 395 and one of its target genes but in different cell types. Plant J 57:313鈥?21CrossRef PubMed
    Kawashima CG, Matthewman CA, Huang S, Lee B-R, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863鈥?76CrossRef PubMed
    Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51:1079鈥?083CrossRef PubMed
    Ko JH, Prassinos C, Han KH (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469鈥?78CrossRef PubMed
    Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017鈥?020PubMed Central PubMed
    Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311鈥?322CrossRef PubMed
    Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713鈥?14CrossRef PubMed
    Li C, Li Y, Bai L, Zhang T, He C, Yan Y, Yu X (2013) Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Physiol Plant 151:406鈥?22CrossRef PubMed
    Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?048951 PubMed Central CrossRef PubMed
    Liu Z, Zhu Q, Tong L (1980) Boron-deficient soils and their distribution in China. Acta Pedol Sin 17:228鈥?39
    Liu Y, Wang L, Chen D, Wu X, Huang D, Chen L, Li L, Deng X, Xu Q (2014) Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genom 15:695. doi:10.鈥?186/鈥?471-2164-15-695 CrossRef
    Lorrain S, Lin B, Auriac MC, Kroj T, Saindrenan P, Nicole M, Balagu茅 C, Roby D (2004) Vascular associated death1, a novel GRAM domain-containing protein, is a regulator of cell death and defense responses in vascular tissues. Plant Cell 16:2217鈥?232PubMed Central CrossRef PubMed
    Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS (2014) Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol 14:123. doi:10.鈥?186/鈥?471-2229-14-123 PubMed Central CrossRef PubMed
    Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186鈥?190PubMed Central CrossRef PubMed
    Nable RO, Ba帽uelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181鈥?98CrossRef
    Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420鈥?428CrossRef PubMed
    O鈥橬eill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester in vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem 271:22923鈥?2930CrossRef PubMed
    O鈥橬eill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsisgrowth. Science 294:846鈥?49CrossRef PubMed
    Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674鈥?90CrossRef PubMed
    Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257鈥?63CrossRef PubMed
    Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960鈥?76PubMed
    Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q (2011) Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp Bot 62:4943鈥?954CrossRef PubMed
    Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Genome Biol 5:P5. doi:http://鈥媑enomebiology.鈥媍om/鈥?004/鈥?/鈥?/鈥婸5
    Ride J (1975) Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol Plant 5:125鈥?34
    Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17鈥?0CrossRef
    Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258鈥?64CrossRef PubMed
    Sheng O, Song S, Peng S, Deng X (2009) The effects of low boron on growth, gas exchange, boron concentration and distribution of 鈥楴ewhall鈥?navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci Hortic Amst 121:278鈥?83CrossRef
    Shi L-X, Lorkovi膰 ZJ, Oelm眉ller R, Schr枚der WP (2000) The low molecular mass PsbW protein is involved in the stabilization of the dimeric photosystem II complex in Arabidopsis thaliana. J Biol Chem 275:37945鈥?7950CrossRef PubMed
    Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121鈥?48CrossRef
    Silva DHd, Rossi ML, Boaretto AE, Nogueira NdL, Muraoka T (2008) Boron affects the growth and ultrastructure of castor bean plants. Sci Agr 65:659鈥?64
    Smith CG, Rodgers MW, Zimmerlin A, Ferdinando D, Bolwell GP (1994) Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 192:155鈥?64CrossRef
    Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 12:927鈥?34CrossRef PubMed
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and Is expressed at meristem and primordia boundaries. Cell 85:159鈥?70CrossRef PubMed
    Spanjers A, Pierson E (1982) Lignified cells in Lilium longiflorum Thunb. styles and their relation to bioelectric potential changes. Planta 156:193鈥?98CrossRef PubMed
    Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051鈥?065PubMed Central CrossRef PubMed
    Takada S, K-i Hibara, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127鈥?135PubMed
    Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Guti茅rrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. P Natl Acad Sci 107:4477鈥?482CrossRef
    Voxeur A, Fry SC (2014) Glycosylinositol phosphorylceramides (GIPCs) from Rosa cell cultures are boron
    idged in the plasma membrane and form complexes with rhamnogalacturonan-II. Plant J 79:139鈥?49PubMed Central CrossRef PubMed
    Wang J-W, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738鈥?49CrossRef PubMed
    Wang J-W, Park MY, Wang L-J, Koo Y, Chen X-Y, Weigel D, Poethig RS (2011) miRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012. doi:10.鈥?371/鈥媕ournal.鈥媝gen.鈥?002012 PubMed Central CrossRef PubMed
    Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot Lond 37:629鈥?72
    Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903鈥?918PubMed Central CrossRef PubMed
    Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915鈥?22CrossRef PubMed
    Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001PubMed Central CrossRef PubMed
    Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539鈥?547PubMed Central CrossRef PubMed
    Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750鈥?59PubMed Central CrossRef PubMed
    Wu X-M, Liu M-Y, Ge X-X, Xu Q, Guo W-W (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495鈥?05CrossRef PubMed
    Xiao JX, Yan X, Peng SA, Fang YW (2007) Seasonal changes of mineral nutrients in fruit and leaves of 鈥楴ewhall鈥?and 鈥楽kagg鈥檚 Bonanza鈥?navel oranges. J Plant Nut 30:671鈥?90CrossRef
    Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280鈥?93PubMed Central CrossRef PubMed
    Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X (2010) Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genom 11:246CrossRef
    Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59鈥?6CrossRef PubMed
    Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271鈥?287PubMed Central CrossRef PubMed
    Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369鈥?6378CrossRef PubMed
    Yang C-Q, Liu Y-Z, An J-C, Li S, Jin L-F, Zhou G-F, Wei Q-J, Yan H-Q, Wang N-N, Fu L-N (2013a) Digital gene expression analysis of corky split vein caused by boron deficiency in 鈥楴ewhall鈥?navel orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy. PLoS One 8:e65737. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?065737 PubMed Central CrossRef PubMed
    Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013b) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521鈥?536PubMed Central CrossRef PubMed
    Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025鈥?038PubMed Central CrossRef PubMed
    Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y (2014) Role of microRNAs in plant responses to nutrient stress. Plant Soil 374:1005鈥?021CrossRef
    Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569鈥?81CrossRef PubMed
    Zhang X-N, Li X, Liu J-H (2013) Identification of conserved and novel cold-responsive microRNAs in Trifoliate Orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Mol Biol Rep 32:328鈥?41CrossRef
    Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W-X (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7:e29669. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?029669 PubMed Central CrossRef PubMed
    Zhcng L, Qiqing Z, Lihua T (1989) Regularities of content and distribuition of boron in soils. Acta Pedol Sin 4:006
    Zhou G-K, Kubo M, Zhong R, Demura T, Ye Z-H (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391鈥?04CrossRef PubMed
    Zhu Q-H, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149PubMed Central CrossRef PubMed
    Zhu H, Hu F, Wang R, Zhou X, Sze S-H, Liou LW, Barefoot A, Dickman M, Zhang X (2011)Arabidopsisargonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242鈥?56PubMed Central CrossRef PubMed
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406鈥?415PubMed Central CrossRef PubMed
  • 作者单位:Chengquan Yang (1) (2) (3)
    Tao Liu (1) (2) (3)
    Fuxi Bai (1) (2) (3)
    Nannan Wang (1) (2) (3)
    Zhiyong Pan (1) (2) (3)
    Xiang Yan (1) (2) (3)
    ShuAng Peng (1) (2) (3)

    1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
    2. Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
    3. Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Corky split vein can develop under long-term boron deficient conditions in Citrus sinensis L. Osbeck cv. Newhall. This symptom only occurs in the upper rather than the lower epidermis of old leaves. Our previous study demonstrated that vascular hypertrophy was involved in the symptoms, and the 3rd developmental stage of corky split vein (BD3) was the critical stage for phenotype formation. Here, we performed an intensive study on the BD3 vein and its control sample (CK3 vein). A lignin test demonstrated that the lignin content in BD3 vein was approximately 1.7 times more than the CK3 vein. Anatomical investigation of the corky split vein indicated that the upper epidermis was destroyed by overgrowing vascular cells, and the increased lignin may contribute to vascular cell differentiation and wounding-induced lignification. In a subsequent small RNA sequencing of the BD3 and CK3 veins, 99 known miRNAs and 22 novel miRNAs were identified. Comparative profiling of these miRNAs demonstrated that the 57 known miRNAs and all novel miRNAs exhibited significant expression differences between the two small RNAs libraries of the BD3 and CK3 veins. Associated with our corresponding digital gene expression data, we propose that the decreased expression of two miRNAs, csi-miR156b and csi-miR164, which leads to the up-regulation of their target genes, SPLs (csi-miR156b-targeted) and CUC2 (csi-miR164-targeted), may promote vascular cell division and orderless stage transition in old leaves. Keywords Corky split vein Anatomy miRNAome Lignification Cell division Orderless stage transition

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700