Thermal, mechanical and flame retardant behavior of poly(urethane-ester) nanocomposite foams reinforced with hydroxyl modified montmorillonite
详细信息    查看全文
  • 作者:Ayesha Kausar
  • 关键词:Poly(urethane ; ester) ; Modified montmorillonite ; Foam ; in ; situ polymerization
  • 刊名:International Journal of Plastics Technology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:2
  • 页码:275-287
  • 全文大小:829 KB
  • 参考文献:1.Ashraf R, Kausar A, Siddiq M (2014) High performance multi-layered polymer/nanodiamond composites: synthesis and properties. Iran Polym J 23:531–545CrossRef
    2.Hesami M, Bagheri R, Masoomi M (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym J 23:469–476CrossRef
    3.Alaei MH, Mahajan P, Brieu M, Kondo D, Rizvi SJA, Kumar S, Bhatnagar N (2013) Effect of particle size on thermomechanical properties of particulate polymer composite. Iran Polym J 22:853–863CrossRef
    4.Duan J, Shao S, Li Y, Wang L, Jiang P, Liu B (2012) Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 21:109–120CrossRef
    5.Aliabadi MM, Naderi G, Shahtaheri SJ, Forushani AR, Mohammadfam I, Jahangiri M (2014) Mechanical and barrier properties of XNBR-clay nanocomposite: a promising material for protective gloves. Iran Polym J 23:289–296CrossRef
    6.Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45:487–506CrossRef
    7.Duquesne S, Jama C, Le Bras M, Delobel R, Recourt P, Gloaguen JM (2003) Elaboration of EVA–nanoclay systemsdcharacterization, thermal behavior and fire performance. Compos Sci Technol 63:1141–1148CrossRef
    8.Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915–5933CrossRef
    9.Chang JH, An YU (2002) Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability. J Polym Sci B Polym Phys 40:670–677CrossRef
    10.Kausar A, Zulfiqar S, Yavuz CT, Sarwar MI (2011) Investigation on novel thermoplastic poly(urethane-thiourea-imide)s with enhanced chemical and heat resistance. Polym Degrad Stab 96:1333–1341CrossRef
    11.Chen TK, Tien YI, Wei K-H (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353CrossRef
    12.Arab-Baraghi M, Mohammadizadeh M, Jahanmardi R (2014) A simple method for preparation of polymer microcellular foams by in situ generation of supercritical carbon dioxide from dry ice. Iran Polym J 23:427–435CrossRef
    13.Han X, Zeng C, Lee LJ, Koelling KW, Tomasko DL (2003) Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym Eng Sci 43:1261–1275CrossRef
    14.Zeng C, Han X, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer-clay nanocomposite foams prepared with carbon dioxide. Adv Mater 15:1743–1747CrossRef
    15.Gilman JW, Jackson CL, Morgan AB, Harris Jr R (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and Polystyrene nAnocomposites Chem Mater 12:1866–1873
    16.Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P (2002) Poly(ε-caprolaacetone)/clay nanocomposites by in-situ intercalative polymerizatiom catalyzed by dibutyltin dimethoxide. Macromolecules 35:8385–8390CrossRef
    17.Mitsunaga M, Ito Y, Ray SS, Okamoto M, Hironaka K (2003) Intercalated polycarbonate/clay nanocomposites: nanostructure control and foam processing. Macromol Mater Eng 285:543–548CrossRef
    18.Morgan AB, Gilman JW (2002) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87:1329–1338CrossRef
    19.Ye H, Wang J, Wang Y, Chen X, Shi S-P (2013) Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes. Iran Polym J 22:623–633CrossRef
    20.Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217CrossRef
    21.Schartel B, Bartholmai M, Knoll U (2006) Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym Adv Technol 17:772–777CrossRef
    22.Kausar A, Hussain ST (2013) Thermal, morphological and conductivity profile of pyridine/thiophene-based polyesters and their miscible blends. J Thermoplast Compos Mater DOI:. doi:10.​1177/​0892705713486130​
    23.Jia QX, Wu YP, Xiang P, Ye X, Wang YQ, Zhang LQ (2005) Combined effect of Nano-clay and nano-carbon black on properties of NR nanocomposites. Polym Polym Compos 13:709–719
    24.Cao X, Lee LJ, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46:775–783CrossRef
    25.Tien YI, Wei KH (2001) High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders. Macromolecules 34:9045–9052CrossRef
    26.Liu YL, Hsiue GH, Chiu YS, Jeng RJ, Perng LH (1996) Phosphorus-containing epoxy for flame retardant. I. Synthesis, thermal, and flame-retardant properties. J Appl Polym Sci 61:613–621CrossRef
  • 作者单位:Ayesha Kausar (1)

    1. Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, Islamabad, 44000, Pakistan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer India
  • ISSN:0975-072X
文摘
Presently, poly(urethane-ester) (PUE)/modified montmorillonite (MMT) nanocomposites and the respective foams have been prepared with organically tailored layered silicates (hydroxyl modified MMT-OH). In-situ polymerization was used to react the poly(urethane-ester) and modified montmorillonite. According to morphology analysis, the modified clay consequence in increased cell density and reduced cell size compared with pure PUE foam. The silicate layers of MMT-OH were well exfoliated in the PUE matrix due to chemical reaction between the hydroxyl groups of MMT-OH and functional groups of PUE. During foaming, the montmorillonite clay nanoparticles played a multifunctional role. The nanoplatelets acted as nucleating agents (improving the cellular structure) and also in increasing the thermal and mechanical properties of the resulting material. The tensile strength and modulus of PUE/MMT-OH 1 Foam (1 wt.% nanofiller) was 49.5 MPa and 17 GPa respectively, which was increased to 51.1 MPa and 20 GPa in PUE/MMT-OH 5 Foam (5 wt.% nanofiller). 10 % decomposition temperature of PUE/MMT-OH 1-5 Foams was in the range 461–487 °C. In PUE/MMT-OH 5 Foam Tg was higher 134 °C relative to PUE/MMT-OH 1 (Tg 121 °C). The dispersion of clay layers in the polymeric matrix determined the thermal and mechanical stability of the nanocomposites. Evaluation of the non-flammability properties was also important for structural applications of new materials. Limiting oxygen index and UL 94 results depicted that PUE/MMT-OH 1-5 Foam showed increased non-flammability (V-0 rating) with the clay loading. Novel polyurethane/clay foams may act as energy saving materials in construction, heat insulation systems and aerospace structural parts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700