Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer
详细信息    查看全文
  • 作者:Adnan Daud Khan ; Muhammad Amin ; Amjad Ali ; Sultan Daud Khan…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:120
  • 期:2
  • 页码:641-649
  • 全文大小:2,135 KB
  • 参考文献:1.U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866 (1961)ADS View Article
    2.A.D. Khan, G. Miano, Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2), 1023鈥?034 (2013)View Article
    3.A.D. Khan, S.D. Khan, R.U. Khan, N. Ahmad, Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics 9(2), 461鈥?75 (2014)View Article
    4.A.D. Khan, S.D. Khan, R. Khan, N. Ahmad, A. Ali, A. Khalil, F.A. Khan, Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9(5), 1091鈥?102 (2014)View Article
    5.A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, A. Toma, Fano coil-type resonance for magnetic hot-spot generation. Nano Lett. 14(6), 3166鈥?171 (2014)ADS View Article
    6.Z.-J. Yang, Z.-H. Hao, H.-Q. Lin, Q.-Q. Wang, Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale 6(10), 4985鈥?997 (2014)ADS View Article
    7.A.D. Khan, Multiple Fano resonances in bimetallic layered nanostructures. Int. Nano Lett. 4(2), 1鈥?2 (2014)View Article
    8.A.D. Khan, G. Miano, Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8(3), 1429鈥?437 (2013)View Article
    9.A.D. Khan, G. Miano, Investigation of plasmonic resonances in mismatched gold nanocone dimers. Plasmonics 9(1), 35鈥?5 (2013)View Article
    10.M. Amin, H. Ba臒ci, Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity. Prog. Electromagn. Res. 130, 187鈥?06 (2012)View Article
    11.M. Amin, M. Farhat, H. Ba千c谋, A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. 3 (2013)
    12.A.D. Khan, M. Amin, M.Y. Iqbal, A. Ali, R. Khan, S.D. Khan, Twin dipole Fano resonances in symmetric three-layered plasmonic nanocylinder. Plasmonics, 1鈥? (2015). doi:10.鈥?007/鈥媠11468-015-9887-4
    13.N. Liu, L. Langguth, T. Weiss, J. K盲stel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758鈥?62 (2009)ADS View Article
    14.A.E. Cetin, H. Altug, Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11), 9989鈥?995 (2012)View Article
    15.L. Stern, M. Grajower, U. Levy, Fano resonances and all-optical switching in a resonantly coupled plasmonic鈥揳tomic system. Nat. Commun. 5 (2014)
    16.S. Zhan, H. Li, G. Cao, Z. He, B. Li, H. Yang, Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D Appl. Phys. 47(20), 205101 (2014)ADS View Article
    17.L.V. Brown, H. Sobhani, J.B. Lassiter, P. Nordlander, N.J. Halas, Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2), 819鈥?32 (2010)View Article
    18.D. Dregely, M. Hentschel, H. Giessen, Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano 5(10), 8202鈥?211 (2011)View Article
    19.Y.H. Fu, J.B. Zhang, Y.F. Yu, B. Luk鈥檡anchuk, Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6(6), 5130鈥?137 (2012)View Article
    20.F. L贸pez-Tejeira, Paniagua-Dom铆nguez Rn, J.A. S谩nchez-Gil, High-performance nanosensors based on plasmonic Fano-like Interference: probing refractive index with individual nanorice and nanobelts. ACS Nano 6(10), 8989鈥?996 (2012)View Article
    21.L.-Y. Yin, Y.-H. Huang, X. Wang, S.-T. Ning, S.-D. Liu, Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes. AIP Adv. 4(7), 077113 (2014)ADS View Article
    22.Y.-B. Xie, Z.-Y. Liu, Q.-J. Wang, Y.-Y. Zhu, X.-J. Zhang, Miniature polarization analyzer based on surface plasmon polaritons. Appl. Phys. Lett. 105(10), 101107 (2014)ADS View Article
    23.A.E. Cetin, A.F. Coskun, B.C. Galarreta, M. Huang, D. Herman, A. Ozcan, H. Altug, Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 3(1), e122 (2014)View Article
    24.P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)ADS View Article
    25.J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, Q. Sun, Two-dimensional angularly selective optical properties of gold nanoshell with holes. Opt. Express 20(13), 14614鈥?4620 (2012)ADS View Article
    26.T. Wu, S. Yang, X. Li, Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells. Opt. Express 21(6), 7811鈥?820 (2013)ADS View Article
    27.J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9(2), 887鈥?91 (2009)ADS View Article
    28.L. Shao, C. Fang, H. Chen, Y.C. Man, J. Wang, H.-Q. Lin, Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett. 12(3), 1424鈥?430 (2012)ADS View Article
    29.N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lerm茅, M. Hillenkamp, M. Pellarin, Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding. ACS Nano 5(12), 9450鈥?462 (2011)View Article
    30.P. Schau, L. Fu, K. Frenner, M. Sch盲ferling, H. Schweizer, H. Giessen, L.M. Gaspar Venancio, W. Osten, Polarization scramblers with plasmonic meander-type metamaterials. Opt. Express 20(20), 22700鈥?2711 (2012)ADS View Article
    31.N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G.A. Vandenbosch, L. Lagae, V.V. Moshchalkov, Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11(2), 391鈥?97 (2011)ADS View Article
    32.W. Wang, Y. Li, J. Peng, Z. Chen, J. Qian, J. Chen, J. Xu, Q. Sun, Polarization dependent Fano resonance in a metallic triangle embedded in split ring plasmonic nanostructures. J. Opt. 16(3), 035002 (2014)ADS View Article
    33.J.-T. Liu, B.-Z. Xu, Y. Xu, X. Wei, G.-F. Song, Sensitive refractive index sensing with good operation angle polarization tolerance using a plasmonic split-ring resonator array with broken symmetry. J. Phys. D Appl. Phys. 46(19), 195104 (2013)ADS View Article
  • 作者单位:Adnan Daud Khan (1)
    Muhammad Amin (2)
    Amjad Ali (1)
    Sultan Daud Khan (3)
    RehanUllah Khan (1)

    1. Department of Electrical Engineering, Sarhad University of Science and Information Technology, LandiAakhun Ahmad, Ring road, Peshawar, 25000, Pakistan
    2. College of Engineering, Taibah University, Universities Road, 344, Madinah, Saudi Arabia
    3. Department of Information, Systems and Communication, University of Milan-Bicocca, Piazza dell鈥橝teneo Nuovo, 1, 20126, Milan, Italy
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
The optical properties of a nanodimer composed of hollow nanocylinders that are located in a close proximity to each other are investigated. The plasmon modes of the dimer resonator spectrally overlap and induce plasmonic Fano resonances due to destructive interference. For the generation of multiple Fano resonances with large modulation depths and sharp linewidths, several configurations of the dimer nanostructure are analyzed. Different kinds of unique Fano resonances are obtained by changing the polarization of incident light. Moreover, the spectral positions and modulation depths of the higher-order multiple Fano resonances can be flexibly tuned and controlled in the extinction spectrum by varying the geometrical parameters. The proposed resonator has the advantage to exhibit multiple Fano resonances with large modulation depths and offers high values of figure of merit and contrast ratio due to which it can be greatly appropriate for plasmon line shaping, slow light and broadband biosensing applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700