Nitrogen-doped carbon nanofiber decorated LiFePO4 composites with superior performance for lithium-ion batteries
详细信息    查看全文
  • 作者:Feng Wang ; Yaoyao Zhang ; Liangcheng Luo ; Jun Du ; Liangui Guo ; Yu Ding
  • 关键词:Lithium iron phosphate ; Nitrogen ; doped carbon nanofiber ; Electrochemical performance ; Lithium ion batteries
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 页码:333-340
  • 全文大小:1,373 KB
  • 参考文献:1.Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115CrossRef
    2.Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204CrossRef
    3.Ding Y, Du J, Guo LG, Zhou HB, Yang HP, Wang F (2015) Nanoscale MnO and natural graphite hybrid materials as high-performance anode for lithium ion batteries. Electrochim Acta 170:9–15CrossRef
    4.Choi S, Kim TH, Lee JI, Kim J, Song HK, Park S (2014) General approach for high-power Li-ion batteries: multiscale lithographic patterning of electrodes. Chemsuschem 7:3483–3490CrossRef
    5.Kou XJ, Ke H, Zhu CB, Rolfe P (2015) First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem Phys 446:1–6CrossRef
    6.Li XL, Jin HC, Liu S, Xin S, Meng Y, Chen JJ (2015) Carambola-shaped LiFePO4/C nanocomposites: directing synthesis and enhanced Li storage properties. J Mater Chem A 3:116–120CrossRef
    7.Song JJ, Wang L, Ma ZP, Du ZL, Shao GJ, Kong LX, Gao WM (2015) Biotemplated fabrication of a novel hierarchical porous C/LiFePO4/C composite for Li-ion batteries. RSC Adv 5:1983–1988CrossRef
    8.Liu TF, Zhao L, Zhu JS, Wang B, Guo CF, Wang DL (2014) The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries. J Mater Chem A 2:2822–2829CrossRef
    9.Guan T, Zuo PJ, Sun S, Du CY, Zhang LL, Cui YZ, Yang LJ, Gao YZ, Yin GP, Wang FP (2014) Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. J Power Sources 268:816–823CrossRef
    10.Kwon NH, Yin H, Brodard P, Sugnaux C, Fromm KM (2014) Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochim Acta 134:215–221CrossRef
    11.Maugeri L, Simonelli L, Iadecola A, Joseph B, Okubo M, Honma I, Wadati H, Mizokawa T, Saini NL (2013) Temperature dependent local structure of LiCoO2 nanoparticles determined by Co K-edge X-ray absorption fine structure. J Power Sources 229:272–276CrossRef
    12.Zhong K, Cui Y, Xia XD, Xue JJ, Liu P, Tong YX (2014) Study on the stability of the LiFePO4 Li-ion battery via an electrochemical method. J Power Sources 250:296–305CrossRef
    13.Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef
    14.Mei RG, Song XR, Yang YF, An ZG, Zhang JJ (2014) Plate-like LiFePO4 crystallite with preferential growth of (010) lattice plane for high performance Li-ion batteries. RSC Adv 4:5746–5752CrossRef
    15.Miao C, Bai PF, Jiang QQ, Sun SQ, Wang XY (2014) A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery. J Power Sources 246:232–238CrossRef
    16.Wu YM, Wen ZH, Li JH (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater 23:1126–1129CrossRef
    17.Zhao D, Feng YL, Wang YG, Xia YY (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88:632–638CrossRef
    18.Fan CL, Lin CR, Han SC, Chen J, Li LF, Bai YM, Zhang KH, Zhang X (2014) Structure, conductive mechanism and electrochemical performances of LiFePO4/C doped with Mg2+, Cr3+ and Ti4+ by a carbothermal reduction method. New J Chem 38:795–801CrossRef
    19.Wang HG, Wang YH, Li YH, Wan YC, Duan Q (2015) Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82:16–123
    20.Zhou YK, Wang J, Hu YY, O'Hayre R, Shao ZP (2010) A porous LiFePO4 and carbon nanotube composite. Chem Commun 46:151–7153
    21.Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ (2013) Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3:1155–1160CrossRef
    22.Yang JL, Wang JJ, Tang YJ, Wang DN, Xiao BW, Li XF, Li RY, Liang GX, Sham TK, Sun XL (2013) In situ self-catalyzed formation of core-shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. J Mater Chem A 1:7306–7311CrossRef
    23.Qin GH, Xue S, Ma QQ, Wang CY (2014) The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm 16:260–269CrossRef
    24.Qin GH, Ma QQ, Wang CY (2014) A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for Lithium ion batteries. Electrochim Acta 115:407–415CrossRef
    25.Wu YF, Liu YN, Guo SW, Zhang SN, Lu TN, Yu ZM, Li CS, Xi ZP (2014) Hierarchical carbon-coated LiFePO4 nano-grain microspheres with high electrochemical performance as cathode for lithium ion batteries. J Power Sources 256:336–344CrossRef
    26.Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782CrossRef
    27.He YM, Chen WJ, Gao CT, Zhou JY, Li XD, Xie EQ (2013) An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5:8799–8820CrossRef
    28.Wang ZH, Qie L, Yuan LX, Zhang WX, Hu XL, Huang YH (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef
    29.Wang ZH, Xiong XQ, Qie L, Huang YH (2013) High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochim Acta 106:320–326CrossRef
    30.Wang B, Li XL, Zhang XF, Luo B, Jin MH, Liang MH, Dayeh SA, Picraux ST, Zhi LJ (2013) Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7:1437–1445CrossRef
    31.Qiao YQ, Pan LX, He L, Dumée L, Kong LX, Zhao MS, Wang LM, Gao WM (2015) Synthesis of single-crystalline LiFePO4 with rhombus-like morphology. Ionics 21:295–299CrossRef
    32.Li BH, Han CP, He YB, Yang C, Du HD, Yang QH, Kang FY (2012) Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ Sci 5:9595–9602CrossRef
    33.Chen JZ, Yang L, Fang SH, Hirano S, Tachibana K (2012) Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. J Power Sources 200:59–66CrossRef
    34.Zhang X, Zhang X, He W, Sun C, Ma J, Yuan J, Du X (2013) High-performance mesoporous LiFePO4 from Baker’s yeast. Colloids Surf B 103:114–120CrossRef
  • 作者单位:Feng Wang (1)
    Yaoyao Zhang (1)
    Liangcheng Luo (1)
    Jun Du (1)
    Liangui Guo (1)
    Yu Ding (1) (2)

    1. College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, 432000, China
    2. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g−1 (at 0.2 C) maintained at 167.9 mAh g−1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g−1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700