Polysaccharide biopolymers modified with titanium or nickel nanoparticles for removal of radionuclides from aqueous solutions
详细信息    查看全文
  • 作者:Jana Pospěchová ; Vojtěch Brynych…
  • 关键词:Composite nanomaterial ; Cellulose ; Chitin ; Chitosan ; Titanium oxide ; Nickel oxide ; Radionuclide removal
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:307
  • 期:2
  • 页码:1303-1314
  • 全文大小:1,495 KB
  • 参考文献:1.Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141CrossRef
    2.Lee SG, Lee KY, Cho SY, Yoon YY, Kim Y (2006) Sorption properties of 152Eu and 241Am in geological materials: Eu as an analogue for monitoring the Am behaviour in heterogeneous geological environments. Geosci J 10:103–114CrossRef
    3.International Atomic Energy Agency (2001) Handling and processing of radioactive waste from nuclear applications. TRS-402, IAEA, Vienna, Austria. http://​www-pub.​iaea.​org/​MTCD/​publications/​PDF/​TRS402_​scr.​pdf
    4.International Atomic Energy Agency (2002) Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers. TRS-408, IAEA, Vienna. http://​www-pub.​iaea.​org/​MTCD/​publications/​PDF/​TRS408_​scr.​pdf
    5.Samanta SK (1996) Hydrated titanium(IV) oxide as a granular inorganic sorbent for removal of radiostrontium. I. Batch equilibration studies. J Radioanal Nucl Chem 209:235–242CrossRef
    6.Metwally E, El-Rahman ROA, Ayoub RR (2007) Modeling batch kinetics of cesium, cobalt and strontium ions adsorption from aqueous solutions using hydrous titanium oxide. Radiochim Acta 95:409–416CrossRef
    7.Pius IC, Charyulu MM, Sivaramakrishnan CK, Patil SK (1995) Studies on sorption of plutonium on inorganic-ion exchangers from sodium-carbonate medium. J Radioanal Nucl Chem 199:1–7CrossRef
    8.Jakobsson AM, Albinsson Y, Rundberg RS (2004) Measurements and modelling of Pm sorption onto TiO2 and goethite. Radiochim Acta 92:683–689CrossRef
    9.Tan X, Fang M, Lu J, Wang X (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168:458–465CrossRef
    10.Bouby M, Lutzenkirchen J (2010) Sorption of Eu(III) onto titanium dioxide: measurements and modeling. J Colloid Interface Sci 350:551–561CrossRef
    11.Wang S, Tan L, Jiang J, Chen J, Feng L (2012) Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co (II) ions. J Radioanal Nucl Chem 296:1305–1312
    12.Mahmood T, Saddique MT, Naeem A, Mustafa S, Zeb N, Shah KH, Waseem M (2011) Kinetic and thermodynamic study of Cd(II), Co(II) and Zn(II) adsorption from aqueous solution by NiO. Chem Eng J 171:935–940CrossRef
    13.Naeem A, Saddique MT, Mustafa S, Tasleem S, Shah KH, Waseem M (2009) Removal of Co2+ ions from aqueous solution by cation exchange sorption onto NiO. J Hazard Mater 172:124–128CrossRef
    14.Sheela T, Nayaka YA (2012) Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem Eng J 191:123–131CrossRef
    15.Behnajady MA, Bimeghdar S (2014) Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem Eng J 239:105–113CrossRef
    16.Muzzarelli RAA, Tubertini O (1969) Chitin and chitosan as chromatographic supports and adsorbents for collection of metal ions from organic and aqueous solutions and sea-water. Talanta 16:1571–1577CrossRef
    17.Leandro VAG, Osvaldo KJ, Rossimiriam PFG, Laurent FG (2008) Adsorption of Cu(II), Cd(I), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083CrossRef
    18.Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70CrossRef
    19.Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
    20.Bhatnagar A, Sillanpaa M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38CrossRef
    21.Wu FC, Tseng RL, Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141CrossRef
    22.Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211CrossRef
    23.Kozlowski CA, Walkowiak W, Pellowski W (2009) Sorption and transport of Cs-137, Sr-90 and Co-60 radionuclides by polymer inclusion membranes. Desalin J. 242:29–37CrossRef
    24.Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451CrossRef
    25.Zhu Y, Hu J, Wang J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nucl Energy 71:172–178CrossRef
    26.Nishad PA, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2012) Cobalt(II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydr Polym 87:2690–2696CrossRef
    27.Metwally E, Elkholy SS, Salem HAM, Elsabee MZ (2009) Sorption behavior of 60Co and 152+154Eu radionuclides onto chitosan derivatives. Carbohydr Polym 76:622–631CrossRef
    28.Rhazi M, Desbricres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquid waste. Eur Polym J. 38:1523–1530CrossRef
    29.JCPDS (2000) PDF 2 database. Release 50. International Centre for Diffraction Data, Newtown Square
    30.Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef
    31.Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRef
    32.Hernandez N, Moreno R, Sanchez-Herencia AJ, Fierro JLG (2005) Surface behavior of nickel powders in aqueous suspensions. J Phys Chem 109:4470–4474CrossRef
    33.Freundlich HMF (1906) Uber die adsorption in lasungen. J Phys Chem 57:385–470
    34.Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef
    35.Park S, Baker JO, Himmel ME, Parilla PA, Johnson JK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
    36.Wada M, Saito Y (2001) Lateral thermal expansion of chitin crystals. J Polym Sci Part B 39:168–174CrossRef
    37.Feng F, Liu Y, Hu K (2004) Influence of alkali-freezing treatment on the solid state structure of chitin. Carbohydr Res 339:2321–2324CrossRef
    38.Chen Q, Xu AR, Li ZY (2011) Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chem 13:3446–3452CrossRef
    39.Balachandaran K, Venckatesh R, Sivaraj R (2010) Synthesis of nano TiO2–SiO2 composite using sol-gel method: effect on size, surface morphology and thermal stability. Int J Eng Sci Technol 2:3695–3700
    40.Adapa PK, Karunakaran Ch, Tabil LG, Schoenau GJ (2009) Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric Eng Int 9:1–26
    41.Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci. 25:159–171CrossRef
    42.Pearson FG, Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci 43:101–116CrossRef
    43.Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef
    44.Lowell S, Shields JE (1991) Powder surface area and porosity, 3rd edn. Wiley, New York
    45.Subrt J, Stengl V, Bakardjieva S, Szatmary L (2006) Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea. Powder Technol 169:33–40CrossRef
    46.Shabana EI, El-Dessouky MI (2002) Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. J Radioanal Nucl Chem 253:281–284CrossRef
    47.Ozaki T, Kimura T, Ohnuki T, Kirishima A, Yoshida T, Isobe H, Francis AJ (2006) Association of Europium(III), Americium(III), and Curium(III) with cellulose, chitin, and chitosan. Environ Toxic Chem. 25:2051–2058CrossRef
    48.Wang M, Xu L, Peng J, Zhai ML, Li JQ, Wei GS (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826CrossRef
  • 作者单位:Jana Pospěchová (1)
    Vojtěch Brynych (1)
    Václav Štengl (2)
    Jakub Tolasz (2)
    Jens Hagen Langecker (3)
    Mária Bubeníková (1)
    Lórant Szatmáry (1)

    1. Fuel Cycle Chemistry and Waste Management Division, ÚJV Řež, a. s., 250 68, Husinec-Řež, Czech Republic
    2. Materials Chemistry Department, Institute of Inorganic Chemistry AS CR v.v.i., 250 68, Husinec-Řež, Czech Republic
    3. Department for Synthesis, Institute of Inorganic Chemistry AS CR v.v.i., 250 68, Husinec-Řež, Czech Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
New composite nanomaterials of cellulose, chitin, and chitosan modified with titanium or nickel nanoparticles were developed and tested for removal of 137Cs, 85Sr, 60Co, and 152+154Eu from aqueous solutions. The composite nanomaterials were characterized by X-ray diffraction, high-resolution scanning electron microscopy, infrared spectroscopy, and nitrogen adsorption–desorption isotherms. The influencing factors of metal adsorption were investigated, including contact time, pH, and metal ions concentration. Freundlich and Langmuir models were applied to fit the Sr(II) equilibrium adsorption data. All Ti modified biopolymers are promising adsorbents for 85Sr, 60Co, and 152+154Eu removal from radioactive wastewater. Keywords Composite nanomaterial Cellulose Chitin Chitosan Titanium oxide Nickel oxide Radionuclide removal

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700