Cyanobacteria mediated green synthesis of gold-silver nanoalloy
详细信息    查看全文
  • 作者:Piya Roychoudhury ; Satabdi Ghosh ; Ruma Pal
  • 关键词:Au ; Ag alloy nanoparticles ; Cyanobacteria ; Surface plasmon resonance ; Transmission electron microscopy
  • 刊名:Journal of Plant Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:73-78
  • 全文大小:729 KB
  • 参考文献:Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Bios 6:385–390
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830PubMed CrossRef
    Castro-Longoria E, Vilchis-Nestor A, Avales-Borja M (2011) Biosynthesis of silver, gold, and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83:42–48CrossRef
    Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem 270:645–649CrossRef
    Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh A, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 21:145–152CrossRef
    Chen D, Chen C (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562CrossRef
    Chou SF, Hsu WL, Hwang JM, Chen CY (2004) Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens Bioelectron 19:999–1005PubMed CrossRef
    Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Lofas S, Lennernäs H, Hämäläinen MD (2000) SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J Med Chem 43:2083–2086PubMed CrossRef
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMed CrossRef
    Devaranjan S, Vimalan B, Sampath S (2004) Phase transfer of Au–Ag alloy nanoparticles from aqueous medium to an organic solvent: effect of aging of surfactant on the formation of Ag-rich alloy compositions. J Colloid Interface Sci 278:126–132CrossRef
    Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B 87:23–27CrossRef
    Gole A, Dash C, Ramakrishnan V, Sainkar S, Mandale A, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679CrossRef
    Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold–silver alloy and core–shell bimetallic nanoparticles. J Phys Chem C 113:11861–11867CrossRef
    Haseley SR, Talaga P, Kamerling JP, Vliegenthart JFG (1999) Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Anal Biochem 274:203–210PubMed CrossRef
    Hegde V, Wang M, Deutsch WA (2004) Characterization of human ribosomal protein S3 binding to 7, 8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance. DNA Repair 3:121–126PubMed CrossRef
    Karlsson R (2004) SPR for molecular interaction analysis: are view of emerging application areas. J Mol Recognit 17:151–161PubMed CrossRef
    Lee I, Han S, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 18:1782–1783
    Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661CrossRef
    Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a Silver (I) nitrate complex. Langmuir 23:2694–2699PubMed CrossRef
    Liu YC, Yu CC, Hsu TC (2007) Trace molecules detectable by surface-enhanced Raman scattering based on newly developed Ag and Au nanoparticlescontaining substrates. Electrochem Commun 9:639–644CrossRef
    Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRef
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 11:3806–3819CrossRef
    Pal A, Shaha S, Kulkarnib V, Murthyb RSR, Devi S (2009) Template free synthesis of silver–gold alloy nanoparticles and cellular uptake of gold nanoparticles in Chinese hamster ovary cell. Mater Chem Phys 113:276–282CrossRef
    Parial D, Pal R (2014) Biosynthesis of monodispersed gold nanoparticles by green alga Rhizoclonium fontinale and associated biochemical changes. J Appl Phycol. doi:10.​1007/​s10811-014-0355-x
    Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria- a green chemistry approach. J Appl Phycol 27:3–10
    Rajasekharreddy P, Rani PU, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanoparticle Res 12:1711–1721CrossRef
    Rich RL, Day YSN, Morton TA, Myszka DG (2001) High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem 296:197–207PubMed CrossRef
    Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6CrossRef
    Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:1–6
    Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag Alloy nanoparticles. Small 1:517–520PubMed CrossRef
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502PubMed CrossRef
    Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101CrossRef
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMed CrossRef
    Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84PubMed CrossRef
    Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:475PubMed PubMedCentral CrossRef
    Zhou M, Chen S, Zhao S, Ma H (2006) One-step synthesis of Au–Ag alloy nanoparticles by a convenient electrochemical method. Phys E 33:28–34CrossRef
  • 作者单位:Piya Roychoudhury (1)
    Satabdi Ghosh (1)
    Ruma Pal (1)

    1. Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
  • 刊物主题:Life Sciences, general; Plant Biochemistry; Protein Science; Receptors; Cell Biology;
  • 出版者:Springer India
  • ISSN:0974-1275
文摘
Green synthesis is a significant process for non-toxic metal nanoparticle production employing plant materials. In the present investigation we reported an environmentally friendly method for gold-silver nano-alloy biosynthesis using a cyanobacterial strain, Lyngbya majuscula as bio-reagent. On exposure of Lyngbya thallus to equimolar solution of gold and silver (1 mM, pH 4) for 72 hrs and subsequent pink coloration of the experimental biomass indicated the nanoparticle synthesis. Extracted nanoparticles showed a distinct single plasmon band at 481 nm and further EDX analysis confirmed the presence of both the metals Au and Ag in nano-alloy form. It was also observed from TEM study that all the synthesized particles were spherical in nature with a size range of ~5-25 nm. The SEM pictures of the metal treated biomass confirmed the intra and extracellular nano-alloy formation. The XRD analysis of particle loaded biomass revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8°and 77.8° that were indexed at (111), (200), (220) and (311) lattice planes. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by FTIR. Overall, this technique requires low energy and less manufacturing cost for metal alloy biosynthesis. Keywords Au-Ag alloy nanoparticles Cyanobacteria Surface plasmon resonance Transmission electron microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700