Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide
详细信息    查看全文
  • 作者:Shanshan Ji ; Zhe Yang ; Chao Zhang ; Yue-E Miao ; Weng Weei Tjiu…
  • 关键词:Nonenzymatic glucose sensor ; Electrocatalytic oxidation ; Ni(OH)2 nanoparticles ; Molybdenum sulfide
  • 刊名:Microchimica Acta
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:180
  • 期:11-12
  • 页码:1127-1134
  • 全文大小:1681KB
  • 参考文献:1. Chen LQ, Zhang XE, Xie WH, Zhou YF, Zhang ZP, Cass AEG (2002) Genetic modification of glucose oxidase for improving performance of an amperometric glucose biosensor. Biosens Bioelectron 17:851-57 CrossRef
    2. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125:588-93 CrossRef
    3. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259-65 CrossRef
    4. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378-382 CrossRef
    5. Liu GD, Lin YH (2006) Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 8:251-56 CrossRef
    6. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402-407 CrossRef
    7. Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161-86 CrossRef
    8. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948-952 CrossRef
    9. You TY, Niwa O, Chen ZL, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191-196 CrossRef
    10. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655-660 CrossRef
    11. Toghill KE, Xiao L, Phillips MA, Compton RG (2010) The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors Actuators B Chem 147:642-52 CrossRef
    12. Hutton LA, Vidotti M, Patel AN, Newton ME, Unwin PR, Macpherson JV (2011) Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J Phys Chem C 115:1649-658 CrossRef
    13. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647-650 CrossRef
    14. Budroni G, Corma A (2006) Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew Chem Int Ed 45:3328-331 CrossRef
    15. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts-“inert-and “active-support materials and their role for the oxygen supply during reaction. J Catal 197:113-22 CrossRef
    16. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296-299 CrossRef
    17. Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949-6954 CrossRef
    18. Li MX, Zhu JE, Zhang LL, Chen X, Zhang HM, Zhang FZ, Xu SL, Evans DG (2011) Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine. Nanoscale 3:4240-246 CrossRef
    19. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147-50 CrossRef
    20. Chang K, Chen WX (2011) L-Cysteine-Assisted synthesis of layered MoS2/Graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720-728 CrossRef
    21. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100-02 CrossRef
    22. Zhong X, Yang HD, Guo SJ, Li SW, Gou GL, Niu ZY, Dong ZP, Lei YJ, Jin J, Li R, Ma JT (2012) In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J Mater Chem 22:13925-3927 CrossRef
    23. Xiang Q, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575-578 CrossRef
    24. Merki D, Fierro S, Vrubel H, Hu XL (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262-267 CrossRef
    25. Ho WK, Yu JC, Lin J, Yu JG, Li PS (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865-869 CrossRef
    26. Deki S, Hosokawa A, Beleke AB, Mizuhata M (2009) alpha-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films 517:1546-554 CrossRef
    27. Huang JF (2009) Facile preparation of an ultrathin nickel film coated nanoporous gold electrode with the unique catalytic activity to oxidation of glucose. Chem Commun 10:1270-272 CrossRef
    28. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568-71 CrossRef
    29. Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5:9934-938 CrossRef
    30. Zhou KF, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic oxidation of glucose by the glucose oxidase immobilized in graphene-Au-Nafion biocomposite. Electroanalysis 22:259-64 CrossRef
    31. Li CC, Liu YL, Li LM, Du ZF, Xu SJ, Zhang M, Yin XM, Wang TH (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77:455459
    32. Luo PF, Kuwana T, Paul DK, Sherwood P (1996) Electrochemical and XPS study of the nickel-titanium electrode surface. Anal Chem 68:3330-337 CrossRef
    33. Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and grapheme. Microchim Acta 177:103-09 CrossRef
    34. Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120-24 CrossRef
    35. Zhang L, Ni YH, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103-08 CrossRef
  • 作者单位:Shanshan Ji (1)
    Zhe Yang (1)
    Chao Zhang (1)
    Yue-E Miao (1)
    Weng Weei Tjiu (2)
    Jisheng Pan (2)
    Tianxi Liu (1)

    1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
    2. Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore
  • ISSN:1436-5073
文摘
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10-,300 μM concentration range (R 2 --.9987), the detection limit is very low (5.8?μM), response is rapid (< 2?s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good. Figure An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700