One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials
详细信息    查看全文
  • 作者:Yuxi Xu (1)
    Xiaoqing Huang (2)
    Zhaoyang Lin (1)
    Xing Zhong (1)
    Yu Huang (2) (3)
    Xiangfeng Duan (1) (3)
  • 关键词:graphene ; Ni(OH)2 ; hydrogel ; three ; dimensional ; supercapacitor ; energy storage
  • 刊名:Nano Research
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:6
  • 期:1
  • 页码:65-76
  • 全文大小:985KB
  • 参考文献:1. Whittingham, M. S. History, evolution, and future status of energy storage. / Proc. IEEE. 2012, / 100, 1518-534. CrossRef
    2. Armaroli, N.; Balzani, V. Towards an electricity-powered world. / Energy Environ. Sci. 2011, / 4, 3193-222. CrossRef
    3. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. / Nat. Mater. 2005, / 4, 366-77. CrossRef
    4. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. / Nat. Mater. 2008, / 7, 845-54. CrossRef
    5. Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. / Energy Environ. Sci. 2010, / 3, 1238-251. CrossRef
    6. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. / Chem. Soc. Rev. 2012, / 41, 797-28. CrossRef
    7. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. / Science 2011, / 332, 1537-541. CrossRef
    8. Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. / Energy Environ. Sci. 2011, / 4, 1113-132. CrossRef
    9. Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. / Small 2012, / 8, 1805-834. CrossRef
    10. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. / Adv. Mater. 2011, / 23, 4828-850. CrossRef
    11. Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Graphene-based ultracapacitors. / Nano Lett. 2008, / 8, 3498-502. CrossRef
    12. Yu, D. S.; Dai, L. M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. / J. Phys. Chem. Lett. 2010, / 1, 467-70. CrossRef
    13. Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. Supercapacitor devices based on graphene materials. / J. Phys. Chem. C 2009, / 113, 13103-3107. CrossRef
    14. Xu, Y. X.; Shi, G. Q. Assembly of chemically modified graphene: Methods and applications. / J. Mater. Chem. 2011, / 21, 3311-323. CrossRef
    15. Li, C.; Shi, G. Q. Three-dimensional graphene architectures. / Nanoscale 2012, / 4, 5549-563. CrossRef
    16. Xu, Y. X.; Wu, Q.; Sun, Y. Q.; Bai, H.; Shi, G. Q. Threedimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. / ACS Nano 2010, / 4, 7358-362. CrossRef
    17. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. / J. Am. Soc. Chem. 2010, / 132, 14067-4069. CrossRef
    18. Bai, H.; Sheng, K. X.; Zhang, P. F.; Li, C.; Shi, G. Q. Graphene oxide/conducting polymer composite hydrogels. / J. Mater. Chem. 2011, / 21, 18653-8658. CrossRef
    19. Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by / in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. / Adv. Mater. 2011, / 23, 5679-683. CrossRef
    20. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mullen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. / J. Am. Chem. Soc. 2012, / 134, 9082-085. CrossRef
    21. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. / ACS Nano 2010, / 4, 4324-330. CrossRef
    22. Zhang, L.; Shi, G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. / J. Phys. Chem. C 2011, / 115, 17206-7212. CrossRef
    23. Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. / Sci. Rep. 2012, / 2, 247. CrossRef
    24. Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. / Adv. Mater. 2012, / 24, 4569-573. CrossRef
    25. Chen, W. F.; Yan, L. F. / In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. / Nanoscale 2011, / 3, 3132-137. CrossRef
    26. Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. / J. Mater. Chem. 2011, / 21, 6494-497. CrossRef
    27. Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Mullen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. / Adv. Mater. 2012, / 24, 5130-135. CrossRef
    28. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. / ACS Nano 2012, / 6, 3206-213. CrossRef
    29. Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. / ACS Nano 2012, / 6, 4020-028. CrossRef
    30. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. / Small 2011, / 7, 3163-168. CrossRef
    31. Du, F.; Yu, D. S.; Dai, L. M.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. / Chem. Mater. 2011, / 23, 4810-816. CrossRef
    32. Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. / J. Am. Chem. Soc. 2010, / 132, 3270-271. CrossRef
    33. Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. / J. Am. Chem. Soc. 2010, / 132, 7472-477. CrossRef
    34. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. / J. Mater. Chem. 2011, / 21, 7376-380. CrossRef
    35. Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. / J. Am. Chem. Soc. 2010, / 132, 8180-186. CrossRef
    36. Qiu, J.; Yang, X. W.; Gou, X. L.; Yang, W. R.; Ma, Z. F.; Wallace, G. G.; Li, D. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. / Chem. Eur. J. 2010, / 16, 10653-0658. CrossRef
    37. Yan, J.; Fang, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. / Adv. Funct. Mater. 2012, / 22, 2632-641. CrossRef
    38. Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fang, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. / J. Mater. Chem. 2012, / 22, 11494-1502. CrossRef
    39. Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. / Chem. Commun. 2011, / 47, 6305-307. CrossRef
    40. Yang, S. B.; Wu, X. L.; Chen, C. L.; Dong, H. L.; Hu, W. P.; Wang, X. K. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. / Chem. Commun. 2012, / 48, 2773-775. CrossRef
    41. Chang, J.; Xu, H.; Sun, J.; Gao, L. High pseudocapacitance material prepared via / in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. / J. Mater. Chem. 2012, / 22, 11146-1150. CrossRef
    42. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. / J. Am. Chem. Soc. 1958, / 80, 1339-339. CrossRef
    43. Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. / J. Am. Chem. Soc. 2009, / 131, 13490-3497. CrossRef
  • 作者单位:Yuxi Xu (1)
    Xiaoqing Huang (2)
    Zhaoyang Lin (1)
    Xing Zhong (1)
    Yu Huang (2) (3)
    Xiangfeng Duan (1) (3)

    1. Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
    2. Department of Materials Science and Engineering, University of California, Los Angeles, California, 90095, USA
    3. California Nanosystems Institute, University of California, Los Angeles, California, 90095, USA
  • ISSN:1998-0000
文摘
Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing ?2 wt.% Ni(OH)2 exhibited a specific capacitance of ?,247 F/g at a scan rate of 5 mV/s and ?85 F/g at 40 mV/s (?3% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (?09 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (?,352 F/g at 5 mV/s) and rate capability (?6% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (?3 and ?7 Wh/kg, respectively) and power densities (? and ? kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700