Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls
详细信息    查看全文
  • 作者:Zhao Zhang (1)
    Teng Li (1) (2)
  • 关键词:carbon nanoscroll ; graphene ; carbon nanotube ; nano ; oscillator ; molecular dynamics
  • 刊名:Nanoscale Research Letters
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:6
  • 期:1
  • 全文大小:589KB
  • 参考文献:1. Viculis LM, Mack JJ, Kaner RB: A chemical route to carbon nanoscrolls. / Science 2003, 299:1361. CrossRef
    2. Shioyama H, Akita T: A new route to carbon nanotubes. / Carbon 2003, 41:179鈥?81. CrossRef
    3. Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K: Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. / Nano Lett 2009, 9:2565鈥?570. CrossRef
    4. Braga SF, Coluci VR, Legoas SB, Giro R, Galvao DS, Baughman RH: Structure and dynamics of carbon nanoscrolls. / Nano Lett 2004, 4:881鈥?84. CrossRef
    5. Shi XH, Pugno NM, Gao HJ: Tunable core size of carbon canoscrolls. / J Comput Theor Nanosci 2010, 7:517鈥?21. CrossRef
    6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. / Science 2004, 306:666鈥?69. CrossRef
    7. Zhang YB, Tan YW, Stormer HL, Kim P: Experimental observation of the quantum Hall effect and Berry's phase in graphene. / Nature 2005, 438:201鈥?04. CrossRef
    8. Lee C, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. / Science 2008, 321:385鈥?88. CrossRef
    9. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. / Rev Mod Phys 2009, 81:109鈥?54. CrossRef
    10. Mpourmpakis G, Tylianakis E, Froudakis GE: Carbon nanoscrolls: a promising material for hydrogen storage. / Nano Lett 2007, 7:1893鈥?897. CrossRef
    11. Coluci VR, Braga SF, Baughman RH, Galvao DS: Prediction of the hydrogen storage capacity of carbon nanoscrolls. / Phys Rev B 2007, 75:6.
    12. Shi XH, Cheng Y, Pugno NM, Gao HJ: Tunable water channels with carbon nanoscrolls. / Small 2010, 6:739鈥?44. CrossRef
    13. Shi XH, Pugno NM, Cheng Y, Gao HJ: Gigahertz breathing oscillators based on carbon nanoscrolls. / Appl Phys Lett 2009, 95:163113鈥?63113. CrossRef
    14. Shi XH, Cheng Y, Pugno NM, Gao HJ: A translational nanoactuator based on carbon nanoscrolls on substrates. / Appl Phys Lett 2010, 96:517鈥?21.
    15. Zheng QS, Jiang Q: Multiwalled carbon nanotubes as gigahertz oscillators. / Phys Rev Lett 2002, 88:045503. CrossRef
    16. Legoas SB, Coluci VR, Braga SF, Coura PZ, Dantas SO, Galvao DS: Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. / Phys Rev Lett 2003, 90:055504. CrossRef
    17. Rivera JL, McCabe C, Cummings PT: Oscillatory behavior of double-walled nanotubes under extension: a simple nanoscale damped spring. / Nano Lett 2003, 3:1001鈥?005. CrossRef
    18. Ershova OV, Lozovik YE, Popov AM, Bubel ON, Poklonskii NA, Kislyakov EF: Control of the motion of nanoelectromechanical systems based on carbon nanotubes. / Phys Solid State 2007, 49:2010鈥?014. CrossRef
    19. Coluci VR, Timoteo VS, Galvao DS: Thermophoretically driven carbon nanotube oscillators. / Appl Phys Lett 2009, 95:253103. CrossRef
    20. Kang JW, Song KO, Hwang HJ, Jiang Q: Nanotube oscillator based on a short single-walled carbon nanotube bundle. / Nanotechnology 2006, 17:2250鈥?258. CrossRef
    21. Zhang Z, Li T: Carbon nanotube initiated formation of carbon nanoscrolls. / Appl Phys Lett 2010, 97:081909. CrossRef
    22. Kim YK, Min DH: Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates. / Carbon 2010, 48:4283鈥?288. CrossRef
    23. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. / J Phys: Condens Matter 2002, 14:783鈥?02. CrossRef
    24. Stuart SJ, Tutein AB: Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. / J Chem Phys 2000, 112:6472鈥?486. CrossRef
    25. Plimpton S: Fast parallel algorithms for short-range molecular dynamics. / J Comput Phys 1995, 117:1鈥?9. CrossRef
    26. Coluci VR, Legoas SB, de Aguiar MAM, Galvao DS: Chaotic signature in the motion of coupled carbon nanotube oscillators. / Nanotechnology 2005, 16:583鈥?89. CrossRef
    27. Krasheninnikov AV, Banhart F: Engineering of nanostructured carbon materials with electron or ion beams. / Nat Mater 2007, 6:723鈥?33. CrossRef
    28. Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. / Nat Mater 2004, 3:153鈥?57. CrossRef
    29. da Silva AJR, Fazzio A, Antonelli A: Bundling up carbon nanotubes through Wigner defects. / Nano Lett 2005, 5:1045鈥?049. CrossRef
    30. Guo WL, Guo YF, Gao HJ, Zheng QS, Zhong WY: Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. / Phys Rev Lett 2003, 91:125501. CrossRef
    31. Xu ZP: Energy dissipation in the double-walled carbon nanotube based mechanical oscillators. / J Comput Theor Nanosci 2008, 5:655鈥?58.
    32. Zhao Y, Ma CC, Chen GH, Jiang Q: Energy dissipation mechanisms in carbon nanotube oscillators. / Phys Rev Lett 2003, 91:175504. CrossRef
    33. Zhao XG, Cummings PT: Molecular dynamics study of carbon nanotube oscillators revisited. / J Chem Phys 2006, 124:134705. CrossRef
    34. Kang JW, Song KO, Kwon OK, Hwang HJ: Carbon nanotube oscillator operated by thermal expansion of encapsulated gases. / Nanotechnology 2005, 16:2670鈥?676. CrossRef
  • 作者单位:Zhao Zhang (1)
    Teng Li (1) (2)

    1. Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
    2. Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
  • ISSN:1556-276X
文摘
We demonstrate a viable approach to fabricating ultrafast axial nano-oscillators based on carbon nanoscrolls (CNSs) using molecular dynamics simulations. Initiated by a single-walled carbon nanotube (CNT), a monolayer graphene can continuously scroll into a CNS with the CNT housed inside. The CNT inside the CNS can oscillate along axial direction at a natural frequency of tens of gigahertz. We demonstrate an effective strategy to reduce the dissipation of the CNS-based nano-oscillator by covalently bridging the carbon layers in the CNS. We further demonstrate that such a CNS-based nano-oscillator can be excited and driven by an external AC electric field, and oscillate at more than 100 GHz. The CNS-based nano-oscillators not only offer a feasible pathway toward ultrafast nano-devices but also hold promise to enable nanoscale energy transduction, harnessing, and storage (e.g., from electric to mechanical).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700