Unique synthesis of graphene-based materials for clean energy and biological sensing applications
详细信息    查看全文
  • 作者:MingSheng Xu (1)
    Yan Gao (1)
    Xi Yang (1)
    HongZheng Chen (1)
  • 关键词:graphene ; clean energy ; chemical and biological sensors ; synthesis ; chemical vapor deposition ; surface segregation ; organic solar cells ; DNA sequencing
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:57
  • 期:23
  • 页码:3000-3009
  • 全文大小:982KB
  • 参考文献:1. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183鈥?91 CrossRef
    2. Dreyer D R, Ruoff R S, Bielawski C W. From conception to realization: An historial account of graphene and some perspectives for its future. Angew Chem Int Ed, 2010, 49: 9336鈥?345 CrossRef
    3. May J W. Platinum surface LEED rings. Surf Sci, 1969, 17: 267鈥?70 CrossRef
    4. Boehm H P, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds. Carbon, 1986, 24: 241鈥?45 CrossRef
    5. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666鈥?69 CrossRef
    6. Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451鈥?0453 CrossRef
    7. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197鈥?00 CrossRef
    8. Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry鈥檚 phase in graphene. Nature, 2005, 438: 201鈥?04 CrossRef
    9. Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009, 4: 217鈥?24 CrossRef
    10. Xu Y X, Shi G Q. Assembly of chemically modified graphene: Methods and applications. J Mater Chem, 2011, 21: 3311鈥?323 CrossRef
    11. Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498鈥?502 CrossRef
    12. Bolotina K I, Sikesb K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146: 351鈥?55 CrossRef
    13. Lee C, Wei X, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385鈥?88 CrossRef
    14. Balandin A A, Ghosh S, Bao W Z. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8: 902鈥?07 CrossRef
    15. Cai W, Zhu Y, Li X, et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl Phys Lett, 2009, 95: 123115 CrossRef
    16. Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5: 487鈥?96 CrossRef
    17. Gao Y, Yip H L, Hau S K, et al. Anode modification of inverted polymer solar cells using graphene oxide. Appl Phys Lett, 2010, 97: 203306 CrossRef
    18. Gao Y, Yip H L, Chen K S, et al. Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv Mater, 2011, 23: 1903鈥?908 CrossRef
    19. Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc, 2010, 132: 18012鈥?8013 CrossRef
    20. Yang X, Xu M S, Qiu W M, et al. Graphene uniformly decorated with gold nanodots: / In situ synthesis, enhanced dispersibility and applications. J Mater Chem, 2011, 21: 8096鈥?103 CrossRef
    21. Ma Y W, Zhang L R, Li J J, et al. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chin Sci Bull, 2011, 56: 3583鈥?589 CrossRef
    22. Yu D S, Dai L M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 2010, 1: 467鈥?70 CrossRef
    23. Wang H W, Wu H Y, Chang Y Q, et al. Tert-butylhydroquinone- decorated graphene nanosheets and their enhanced capacitive behaviors. Chin Sci Bull, 2011, 56: 2092鈥?097 CrossRef
    24. Wang Z, Tang X Z, Yu Z Z, et al. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chin J Polym Sci, 2011, 29: 368鈥?76 CrossRef
    25. Wei D C, Liu Y Q. Controllable synthesis of graphene and its applications. Adv Mater, 2010, 22: 3225鈥?241 CrossRef
    26. Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319: 1229鈥?232 CrossRef
    27. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008, 3: 563鈥?68 CrossRef
    28. Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 2008, 321: 1815鈥?817 CrossRef
    29. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3: 270鈥?74 CrossRef
    30. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706鈥?10 CrossRef
    31. Reina A, Jia X T, Ho J, et al. Few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9: 30鈥?5 CrossRef
    32. Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 4: 574鈥?78 CrossRef
    33. Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7: 406鈥?11 CrossRef
    34. Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 2009, 8: 203鈥?07 CrossRef
    35. Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 2009, 4: 30鈥?3 CrossRef
    36. Wang X, Zhi L J, Tsao N, et al. Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed, 2008, 47: 2990鈥?992 CrossRef
    37. Vijayaraghavan A, Sciascia C, Dehm S, et al. Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano, 2009, 3: 1729鈥?734 CrossRef
    38. Xu M S, Fujita D, Sagisaka K, et al. Production of extended single- layer graphene. ACS Nano, 2011, 5: 1522鈥?528 CrossRef
    39. Coleman J N. Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater, 2009, 19: 3680鈥?695 CrossRef
    40. An X H, Simmons T, Shah R, et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett, 2010, 10: 4295鈥?301 CrossRef
    41. Liang Y T, Hersam M C. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc, 2010, 132: 17661鈥?7663 CrossRef
    42. Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282鈥?86 CrossRef
    43. Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene- based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558鈥?565 CrossRef
    44. Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 2006, 110: 8535鈥?539 CrossRef
    45. Zhou M, Wang Y L, Zhai Y M, et al. Controlled synthesis of large- area and patterned electrochemically reduced graphene oxide films. Chem Eur J, 2009, 15: 6116鈥?120 CrossRef
    46. Coraux J, Ndiaye A T, Busse C, et al. Structural coherency of graphene on Ir(111). Nano Lett, 2008, 8: 565鈥?70 CrossRef
    47. Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312鈥?314 CrossRef
    48. Fujita D, Yoshihara K. Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface. J Vac Sci Technol A, 1994, 12: 2134鈥?139 CrossRef
    49. Gao J H, Fujita D, Xu M S, et al. Unique synthesis of few-layer graphene films on carbon doped Pt83Rh17 surface. ACS Nano, 2010, 4: 1026鈥?032 CrossRef
    50. Xu M S, Fujita D, Chen H Z, et al. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nanoscale, 2011, 3: 2854鈥?858 CrossRef
    51. Fujita D. Nanoscale synthesis and characterization of graphene-based objects. Sci Technol Adv Mater, 2011, 12: 044611 CrossRef
    52. Xu M S, Endres R G, Tsukamoto S, et al. Conformation and local environment dependent conductance of DNA molecules. Small, 2005, 1: 1168鈥?172 CrossRef
    53. Xu M S, Tsukamoto S, Satomi S, et al. Conductance of single thiolated poly(GC)-poly(GC) DNA molecules. Appl Phys Lett, 2005, 87: 083902 CrossRef
    54. Merino P, Svec M, Pinardi A L, et al. Strain-driven moire superstructures of epitaxial graphene on transition metal surfaces. ACS Nano, 2011, 5: 5627鈥?634 CrossRef
    55. Partoens B, Peeters F M. From graphene to graphite: Electronic structure around the K point. Phys Rev B, 2006, 74: 075404 CrossRef
    56. Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97: 187401 CrossRef
    57. Calizo I, Bao W, Miao F, et al. The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass. Appl Phys Lett, 2007, 91: 201904 CrossRef
    58. Xu M S, Fujita D, Gao J H, et al. Auger electron spectroscopy: A rational method for determining thickness of graphene films. ACS Nano, 2010, 4: 2937鈥?945 CrossRef
    59. Xu M S, Fujita D, Hanagata N. Monitoring electron-beam irradiation effect on graphenes by temporal Auger electron spectroscopy. Nanotechnology, 2010, 21: 265705 CrossRef
    60. Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv Mater, 2010, 22: 2392鈥?415 CrossRef
    61. Brodie B C. On the atomic weight of graphite. Philos Trans R Soc London, 1959, 149: 249鈥?59
    62. Staudenmaier L. Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges, 1898, 31: 1481鈥?487 CrossRef
    63. Hummers W S, Offeman J R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339鈥?339 CrossRef
    64. Xu Y X, Sheng X, Li C, et al. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem, 2011, 21: 7376鈥?380 CrossRef
    65. Szabo T, Berkesi O, Forgo P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater, 2006, 18: 2740鈥?749 CrossRef
    66. Zhao J P, Pei S F, Ren W C, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4: 5245鈥?252 CrossRef
    67. Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24: 10560鈥?0564 CrossRef
    68. Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228鈥?40 CrossRef
    69. Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20: 2277鈥?289 CrossRef
    70. Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44: 3342鈥?347 CrossRef
    71. Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene. J Am Chem Soc, 2006, 128: 7720鈥?721 CrossRef
    72. Veca L M, Lu F S, Meziani M J, et al. Polymer functionalization and solubilization of carbon nanosheets. Chem Commun, 2009, 2565鈥?567
    73. Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008, 130: 10876鈥?0877 CrossRef
    74. Gao Y, Chen X Q, Xu H, et al. Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method. Carbon, 2010, 48: 4475鈥?482 CrossRef
    75. Mei Q S, Zhang K, Guan G J, et al. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem Commun, 2010, 7319鈥?321
    76. Zhu Y, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22: 3906鈥?924 CrossRef
    77. Kamat P V. Graphene-based nanoarchitectures: Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett, 2010, 1: 520鈥?27 CrossRef
    78. Liu J, Fu S, Yuan B, et al. Toward a universal 鈥渁dhesive nanosheet鈥?for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 2010, 132: 7279鈥?281 CrossRef
    79. Zhang H, Fu Q, Cui Y, et al. Fabrication of metal nanoclusters on graphene grown on Ru(0001). Chin Sci Bull, 2009, 54: 2446鈥?450 CrossRef
    80. Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 2009, 4: 547鈥?55 CrossRef
    81. Shen J, Shi Z, Li N, et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res, 2010, 3: 339鈥?49 CrossRef
    82. Zou Y H, Liu H B, Yang L, et al. The influence of temperature on magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites. J Magn Magn Mater, 2006, 302: 343鈥?47 CrossRef
    83. Hassan H M A, Abdelsayed V, Khder A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem, 2009, 19: 3832鈥?837 CrossRef
    84. Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem, 2009, 19: 8378鈥?384 CrossRef
    85. Yang S, Cui G, Pang S, et al. Fabrication of cobalt and cobalt oxide/ graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem, 2010, 3: 236鈥?39 CrossRef
    86. Goncalves G, Marques PAAP, Granadeiro C M, et al. Surface modification of graphene nanosheets with gold Nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater, 2009, 21: 4796鈥?802 CrossRef
    87. Jasuja K, Berry V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: Electrical property tailoring and Raman enhancement. ACS Nano, 2009, 3: 2358鈥?366 CrossRef
    88. Quintana M, Spyrou K, Grzelczak M, et al. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano, 2010, 4: 3527鈥?533 CrossRef
    89. Liu J B, Li Y L, Li Y M, et al. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J Mater Chem, 2010, 20: 900鈥?06 CrossRef
    90. Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2: 463鈥?70 CrossRef
    91. De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4: 2713鈥?720 CrossRef
    92. Liu Q, Liu Z F, Zhong X Y, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater, 2009, 19: 894鈥?04 CrossRef
    93. Gupta V, Chaudhary N, Srivastava R, et al. Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc, 2011, 133: 9960鈥?963 CrossRef
    94. Huang X, Yin Z Y, Wu S X, et al. Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 2011, 7: 1876鈥?902 CrossRef
    95. Guo C X, Guai G H, Li C M. Graphene based materials: Enhancing solar energy harvesting. Adv Energy Mater, 2011, 1: 448鈥?52 CrossRef
    96. Chen Y, Shih I, Xiao X. Effects of FeCl3 doping on polymer-based thin film transistors. J Appl Phys, 2004, 96: 454 CrossRef
    97. Ukai S, Ito H, Marumoto K, et al. Electrical conduction of regioregular and regiorandom poly(3-hexylthiophene) doped with iodine. J Phys Soc Jpn, 2005, 74: 3314鈥?319 CrossRef
    98. Maddalena F, Meijer E J, Asadi K, et al. Doping kinetics of organic semiconductors investigated by field-effect transistors. Appl Phys Lett, 2010, 97: 043302 CrossRef
    99. Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of the open-circuit voltage of polymer: Fullerene bulk heterojunction solar cells. J Appl Phys, 2003, 94: 6849 CrossRef
    100. Xu M S, Fujita D, Hanagata N. Perspective and challenges of emerging single-molecule DNA sequencing technologies. Small, 2009, 5: 2638鈥?649 CrossRef
    101. Xu M S, Endres R G, Arakawa Y. The electronic properties of DNA bases. Small, 2007, 3: 1539鈥?543 CrossRef
    102. Xu M S, Endres R G, Arakawa Y. Transverse Electronic Signature of DNA for Electronic Sequencing. Berlin: Springer-Verlag, 2007. 205鈥?20
    103. Xu M S, Fujita D, Hanagata N. Fabrication of graphene nanoribbons, graphene nanoribbon-based field-effect transistors, and its based DNA sequencing devices. Pending Patent, JP 2011-45944
    104. Postma H W C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett, 2010, 10: 420鈥?25 CrossRef
    105. Nelson T, Zhang B, Prezhdo O V. Detection of nucleic acids with graphene nanopores: / Ab initio characterization of a novel sequencing device. Nano Lett, 2010, 10: 3237鈥?242 CrossRef
    106. Min S K, Kim W Y, Cho Y, et al. Fast DNA sequencing with a graphene- based nanochannel device. Nat Nanotechnol, 2011, 6: 162鈥?65 CrossRef
    107. Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467: 190鈥?93 CrossRef
    108. Merchant C A, Healy K, Wanunu M. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 2915鈥?921 CrossRef
    109. Schneider G F, Kowalczyk S W, Calado V E. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 3163鈥?167 CrossRef
    110. Wang Y, Zheng Y, Xu X F, et al. Electrochemical delamination of CVD grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano, 2011, 5: 9927鈥?933 CrossRef
  • 作者单位:MingSheng Xu (1)
    Yan Gao (1)
    Xi Yang (1)
    HongZheng Chen (1)

    1. State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecule Synthesis and Functionalization, Ministrg of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
  • ISSN:1861-9541
文摘
Graphene has unique physical properties, and a variety of proof-of-concept devices based on graphene have been demonstated. A prerequisite for the application of graphene is its production in a controlled manner because the number of graphene layers and the defects in these layers significantly influence transport properties. In this paper, we briefly review our recent work on the controlled synthesis of graphene and graphene-based composites, the development of methods to characterize graphene layers, and the use of graphene in clean energy applications and for rapid DNA sequencing. For example, we have used Auger electron spectroscopy to characterize the number and structure of graphene layers, produced single-layer graphene over a whole Ni film substrate, synthesized well-dispersed reduced graphene oxide that was uniformly grafted with unique gold nanodots, and fabricated graphene nanoscrolls. We have also explored applications of graphene in organic solar cells and direct, ultrafast DNA sequencing. Finally, we address the challenges that graphene still face in its synthesis and clean energy and biological sensing applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700