Fabrication of carbon nanotube/graphene core/shell nanostructures on SiO2 substrates using organic solvents: A molecular dynamics study
详细信息    查看全文
  • 作者:CuiCui Ling (1) (2) (3)
    QingZhong Xue (1) (2) (3)
    NuanNuan Jing (1)
  • 关键词:core/shell nanostructures ; nanoscrolls ; substrates ; organic solvents ; heterojunctions
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:57
  • 期:23
  • 页码:3030-3035
  • 全文大小:664KB
  • 参考文献:1. Huang J Q, Zhang Q, Zhao M Q, et al. A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chin Sci Bull, 2012, 57: 157鈥?66 CrossRef
    2. Tian L L, Zhuang Q C, Li J, et al. Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chin Sci Bull, 2011, 56: 3204鈥?212 CrossRef
    3. Chen M J, Yu F, Hu L J, et al. Recent progresses on the new condensed forms of single-walled carbon nanotubes and energy-harvesting devices. Chin Sci Bull, 2012, 57: 181鈥?86 CrossRef
    4. Ma Y W, Zhang L R, Li J J, et al. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chin Sci Bull, 2011, 56: 3583鈥?589 CrossRef
    5. Peng X, Zhou J, Wang W C, et al. Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010, 48: 3760鈥?768 CrossRef
    6. Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: Apromising material for hydrogen storage. Nano Lett, 2007, 7: 1893鈥?897 CrossRef
    7. Shi X, Cheng Y, Pugno N M, et al. Molecular dynamics: Tunable water channels with carbon nanoscrolls. Small, 2010, 6: 739鈥?44 CrossRef
    8. Shi X, Cheng Y, Pugno N M, et al. A translational nanoactuator based on carbon nanoscrolls on substrates. Appl Phys Lett, 2010, 96: 053115 CrossRef
    9. Bacon R. Growth, structure, and properties of graphite whiskers. J Appl Phys, 1960, 31: 283鈥?90 CrossRef
    10. Kaburagi Y, Hosoya K, Yoshida A, et al. Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber. Carbon, 2005, 43: 2817鈥?819 CrossRef
    11. Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nano-scrolls. Science, 2003, 299: 1361 CrossRef
    12. Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon, 2007, 45: 2797鈥?800 CrossRef
    13. Shioyama H, Akita T. A new route to carbon nanotubes. Carbon, 2003, 41: 179鈥?81 CrossRef
    14. Xia D, Xue Q Z, Xie J, et al. Fabrication of carbon nanoscrolls from monolayer graphene. Small, 2010, 6: 2010鈥?019 CrossRef
    15. Patra N, Wang B, Kral P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett, 2009, 9: 3766鈥?771 CrossRef
    16. Stolyarova E, Stolyarov D, Bolotin K, et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett, 2009, 9: 332鈥?37 CrossRef
    17. Stoberl U, Wurstbauer U, Wegscheider W, et al. Morphology and flexibility of graphene and few-layer graphene on various substrates. Appl Phys Lett, 2008, 93: 051906 CrossRef
    18. Gao Y, Chen X Q, Xu H, et al. Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method. Carbon, 2010, 48: 4475鈥?482 CrossRef
    19. Zhang Z, Li T. Carbon nanotube initiated formation of carbon nanoscrolls. Appl Phys Lett, 2010, 97: 081909 CrossRef
    20. Xie X, Ju L, Feng X F, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett, 2009, 9: 2565鈥?570 CrossRef
    21. Maple J R, Hwang M J, Stockfisch T P, et al. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem, 1994, 15: 162鈥?82 CrossRef
    22. Sun H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem, 1994, 15: 752鈥?68 CrossRef
    23. Sun H. Compass: An / ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B, 1998, 102: 7338鈥?364 CrossRef
    24. Sun H, Ren P, Fried J R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput Theor Polym Sci, 1998, 8: 229鈥?46 CrossRef
    25. Rigby D, Sun H, Eichinger B E. Computer simulations of poly (ethylene oxide): Force field, PVT diagram and cyclization behaviour. Polym Int, 1997, 44: 311鈥?30 CrossRef
    26. Grujicic M, Cao G, Roy W N. Atomistic modeling of solubilization of carbon nanotubes by non-covalent functionalization with poly ( / p-phenylenevinylene-co-2,5-dioctoxy- / m-phenylenevinylene). Appl Surf Sci, 2004, 227: 349鈥?63 CrossRef
    27. Xie J, Xue Q Z, Chen H J, et al. Influence of solid Surface and functional group on the collapse of carbon nanotubes. J Phys Chem C, 2010, 114: 2100鈥?107 CrossRef
    28. Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131: 1043鈥?049 CrossRef
    29. Szabo T, Hornok V, Schoonheydt R A, et al. Hybrid Langmuir-Blodgett monolayers of graphite oxide nanosheets. Carbon, 2010, 48: 1676鈥?680 CrossRef
    30. Li X L, Liu Y Q, Fu L, et al. Synthesis and device integration of carbon nanotube/silica core-shell nanowires. J Phys Chem C, 2007, 111: 7661鈥?665 CrossRef
    31. Guo Y B, Liu H B, Li Y J, et al. Controlled core-shell structure for efficiently enhancing field-emission properties of organic-inorganic hybrid nanorods. J Phys Chem C, 2009, 113: 12669鈥?2673 CrossRef
    32. Yi P, Poulikakos D, Walther J, et al. Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transfer, 2002, 45: 2087鈥?100 CrossRef
  • 作者单位:CuiCui Ling (1) (2) (3)
    QingZhong Xue (1) (2) (3)
    NuanNuan Jing (1)

    1. College of Science, China University of Petroleum, Qingdao, 266580, China
    2. Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum, Qingdao, 266580, China
    3. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
  • ISSN:1861-9541
文摘
Using molecular mechanics and molecular dynamics simulations, we demonstrate that it is difficult to fabricate single-walled carbon nanotube (SWNT)/carbon nanoscroll (CNS) core/shell nanostructures on solid substrates because of the strong interaction between the graphene (GN) and the substrate. We propose an effective way to reduce the interaction between the GN and the substrate; SWNT/CNS core/shell nanostructures can be fabricated easily on SiO2 substrates by exploiting the volatilization of organic solvents, and inducement with SWNTs. These SWNT/CNS core/shell nanostructures on SiO2 substrates have the potential to be applied in telecom network transmission, or as electronic components in apparatuses such as microcircuit interconnects, nanoelectronics devices, heterojunctions, or sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700