Analytical Modeling and Artificial Neural Network (ANN) Simulation of Current-Voltage Characteristics in Graphene Nanoscroll Based Gas Sensors
详细信息    查看全文
  • 作者:M. Khaledian ; Razali Ismail ; Elnaz Akbari
  • 关键词:Graphene nanoscrolls (GNSs) ; Artificial neural network (ANN) ; N H 3 gas sensors ; I ; V characteristic ; Field effect transistor (FET).
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:6
  • 页码:1713-1722
  • 全文大小:998 KB
  • 参考文献:1.Neto AC, Geim A (2012) Graphene: graphene鈥檚 properties. New Scientist 214(2863):iv鈥搗. doi:10.鈥?016/鈥婼0262-4079(12)61116-6 CrossRef
    2.Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109鈥?62. doi:10.鈥?103/鈥婻evModPhys.鈥?1.鈥?09 CrossRef
    3.Mieszawska AJ, Jalilian R, Sumanasekera GU, Zamborini FP (2007) The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3(5). doi:10.鈥?002/鈥媠mll.鈥?00600727
    4.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666鈥?69. arXiv:http://鈥媤ww.鈥媠ciencemag.鈥媜rg/鈥媍ontent/鈥?06/鈥?696/鈥?66.鈥媐ull.鈥媝df , doi:10.鈥?126/鈥媠cience.鈥?102896 . http://鈥媤ww.鈥媠ciencemag.鈥媜rg/鈥媍ontent/鈥?06/鈥?696/鈥?66.鈥媋bstract
    5.Skotnicki T, Hutchby J, King T-J, Wong H-S, Boeuf F (2005) The end of cmos scaling: toward the introduction of new materials and structural changes to improve mosfet performance. IEEE Circ Devices Mag 21 (1):16鈥?6. doi:10.鈥?109/鈥婱CD.鈥?005.鈥?388765 CrossRef
    6.Wallace PR (1947) The band theory of graphite. Phys Rev 71:622鈥?34. doi:10.鈥?103/鈥婸hysRev.鈥?1.鈥?22 CrossRef
    7.Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803. doi:10.鈥?103/鈥婸hysRevLett.鈥?00.鈥?06803 CrossRef
    8.Ratinac KR, Yang W, Ringer SP, Braet F (2010) Toward ubiquitous environmental gas sensorscapitalizing on the promise of graphene. Environ Sci Technol 44(4):1167鈥?176, pMID: 20099803. doi:10.鈥?021/鈥媏s902659d CrossRef
    9.Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) A survey on gas sensing technology. Sensors 12(7):9635鈥?665. doi:10.鈥?390/鈥媠120709635 CrossRef
    10.Yang X, Zhou Z, Wang D, Liu X (2010) High sensitivity carbon nanotubes flow-rate sensors and their performance improvement by coating. Sensors 10(5):4898鈥?906. doi:10.鈥?390/鈥媠100504898 CrossRef
    11.Akbari E, Buntat Z, Enzevaee A, Ebrahimi M, Yazdavar AH, Yusof R (2014) Analytical modeling and simulation of iv characteristics in carbon nanotube based gas sensors using ANN and SVR methods. Chemometr Intell Lab Syst 137(0):173鈥?80. doi:10.鈥?016/鈥媕.鈥媍hemolab.鈥?014.鈥?7.鈥?01 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼016974391400148鈥? CrossRef
    12.Akbari E, Ahmadi MT, Kiani MJ, Feizabadi HK, Rahmani M, Khalid M Monolayer graphene based co隆sub驴2隆/sub驴 gas sensor analytical model. J Comput Theor Nanosci 10(6):(2013-06-01T00:00:00) 1301鈥?304. doi:10.鈥?166/鈥媕ctn.鈥?013.鈥?846 . http://鈥媤ww.鈥媔ngentaconnect.鈥媍om/鈥媍ontent/鈥媋sp/鈥媕ctn/鈥?013/鈥?0000010/鈥?0000006/鈥媋rt00002
    13.Lin Z-D, Hsiao C-H, Young S-J, Huang C-S, Chang S-J, Wang S-B (2013) Carbon nanotubes with adsorbed au for sensing gas. IEEE Sensors J 13(6):2423鈥?427. doi:10.鈥?109/鈥婮SEN.鈥?013.鈥?256124 CrossRef
    14.Wisitsoraat A, Tuantranont A (2013) In: Applications of Nanomaterials in Sensors and Diagnostics, pp 103鈥?41
    15.Mintmire JW, White CT (1998) Universal density of states for carbon nanotubes. Phys Rev Lett 81:2506-2509. doi:10.鈥?103/鈥婸hysRevLett.鈥?1.鈥?506 CrossRef
    16.Lundstrom M, Guo J (2005) Nanoscale Transistors: Device Physics, Modeling and Simulation, 1st. Springer
    17.Akbari E, Yousof R, Ahmadi M, Kiani M, Rahmani M, Feiz Abadi H, Saeidmanesh M (2014) The effect of concentration on gas sensor model based on graphene nanoribbon. Neural Comput Appl 24(1):143鈥?46. doi:10.鈥?007/鈥媠00521-013-1463-2 CrossRef
    18.Nourbakhsh A, Cantoro M, Heyns MM, Sels BF, De Gendt S (2013) (invited) toward ambient-stable molecular gated graphene-fet: a donor/acceptor hybrid architecture to achieve bandgap in bilayer graphene. ECS Trans 53(1):121鈥?29. doi:10.鈥?149/鈥?5301.鈥?121ecst . arXiv:53/鈥?/鈥?21.鈥媐ull.鈥媝df+html . http://鈥媏cst.鈥媏csdl.鈥媜rg/鈥媍ontent/鈥?3/鈥?/鈥?21.鈥媋bstract CrossRef
    19.Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gassensing materials: review and issues. Curr Appl Phys 10(4):1002鈥?004. doi:10.鈥?016/鈥媕.鈥媍ap.鈥?009.鈥?2.鈥?24 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼156717390900611鈥? CrossRef
    20.Chen CW, Hung SC, Yang MD, Yeh CW, Wu CH, Chi GC, Ren F, Pearton SJ (2011) Oxygen sensors made by monolayer graphene under room temperature. Appl Phys Lett 99(24). doi:10.鈥?063/鈥?.鈥?668105
    21.Abedi SH, Ahmadzadeh A, Nikmanesh A, Houshang A, Alizadeh M (2014) The role of endoscopic ultrasound in primary pancreatic lymphoma presented with acute pancreatitis: a case report. J Pancreas 0(0). www.鈥媜micsonline.鈥媍om/鈥媜pen-access/鈥媡he-role-of-endoscopic-ultrasound-in-primary-pancreatic-lymphoma-presented-with-acute-pancreatitis-a-case-report-1590-8577-15-158.鈥媝df
    22.Zhang Y-Q, Fana Y-J, Chenga L, Fana L-L, Wanga Z-Y, Zhonga J-P, Wua L-N, Shena X-C, Shib Z-J A novel glucose biosensor based on the immobilization of glucose oxidase on layer-by-layer assembly film of copper phthalocya- nine functionalized graphene. Electrochimica Acta 104. doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?013.鈥?4.鈥?99 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼001346861300769鈥媂
    23.Ko GK, Ahn H-Y, Park J, Lee Y-M, Kim K-YJ (2010) Graphene-based nitrogen dioxide gas sensors. Sensors 10(4):4083鈥?099. doi:10.鈥?390/鈥媠100404083 CrossRef
    24.Albiss B, Sakhaneh W, Jumah I, Obaidat I (2010) Gas sensing properties of zno/single-wall carbon nanotube composites. IEEE Sensors J 10(12):1807鈥?812. doi:10.鈥?109/鈥婮SEN.鈥?010.鈥?049739 CrossRef
    25.Suehiro J, Ikeda N, Ohtsubo A, Imasaka K (2009) Bacterial detection using a carbon nanotube gas sensor coupled with a microheater for ammonia synthesis by aerobic oxidisation of organic components. IET Nanobiotechnol 3(2):15鈥?2. doi:10.鈥?049/鈥媔et-nbt.鈥?008.鈥?011 CrossRef
    26.Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sensors Actuators B: Chem 161(1):1025鈥?029. doi:10.鈥?016/鈥媕.鈥媠nb.鈥?011.鈥?2.鈥?01 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼092540051101091鈥? CrossRef
    27.Cho TS, Lee K-j, Kong J, Chandrakasan AP (2008) The design of a low power carbon nanotube chemical sensor system. In: Proceedings of the 45th Annual Design Automation Conference, DAC 鈥?8. ACM, NY, USA, pp 84鈥?9. doi:10.鈥?145/鈥?391469.鈥?391494 , (to appear in print)
    28.Akbari E, Buntat Z, Ahmad MH, Enzevaee A, Yousof R, Iqbal SMZ, Ahmad MT, Sidik MAB, Karimi H (2014) Analytical calculation of sensing parameters on carbon nanotube based gas sensors. Sensors 14:5502鈥?515. doi:10.鈥?390/鈥媠140305502 . arXiv:1424-8220/鈥?4/鈥?/鈥?502/鈥媓tm CrossRef
    29.Sinha N, Ma J, Yeow JTW Carbon nanotube-based sensors. J Nanosci Nanotechnol 6 (3):(2006-03-01T00:00:00) 573鈥?90. doi:10.鈥?166/鈥媕nn.鈥?006.鈥?21
    30.Abadi HKF, Ahmadi MT, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ, Ghadiry M Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6(3):(2014-03-01T00:00:00) 513鈥?19. doi:10.鈥?166/鈥媠am.鈥?014.鈥?745 . http://鈥媤ww.鈥媔ngentaconnect.鈥媍om/鈥媍ontent/鈥媋sp/鈥媠am/鈥?014/鈥?0000006/鈥?0000003/鈥媋rt00013
    31.Pourasl A, Ahmadi M, Rahmani M, Chin H, Lim C, Ismail R, Tan M Analytical modeling of glucose biosensors based on carbon nan- otubes. Nanoscale Res Lett 9(1). doi:10.鈥?186/鈥?556-276X-9-33
    32.Karimi Feiz Abadi H, Yusof R, Maryam Eshrati S, Naghib S, Rahmani M, Ghadiri M, Akbari E, Ahmadi M (2014) Currentvoltage modeling of graphene-based dna sensor. Neural Comput Appl 24(1):85鈥?9. doi:10.鈥?007/鈥媠00521-013-1464-1 CrossRef
    33.Liang J, Akinwande D, Wong H-SP (2008) Carrier density and quantum capacitance for semiconducting carbon nanotubes. J Appl Phys 104(6). doi:10.鈥?063/鈥?.鈥?986216
    34.Kim S (2006) Cnt sensors for detecting gases with low adsorption energy by ionization. Sensors 6(5):503鈥?13. doi:10.鈥?390/鈥媠6050503 CrossRef
    35.Song H, Xiao P, Qiu X, Zhu W (2010) Design and preparation of highly active carbon nanotube-supported sulfated tio2 and platinum catalysts for methanol electrooxidation. J Power Sources 195(6):1610鈥?614. doi:10.鈥?016/鈥媕.鈥媕powsour.鈥?009.鈥?9.鈥?45 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼037877530901702鈥? CrossRef
    36.Shi XPNMH Mechanics of carbon nanoscrolls: a review. Acta Mech Solida Sinica 23(6). doi:10.鈥?016/鈥婼0894-9166(11)60002-5 . arXiv:484,497
    37.Shi X, Pugno NM, Gao H (2010) Mechanics of carbon nanoscrolls: a review. Acta Mechanica Solida Sinica 23(6):484鈥?97. doi:10.鈥?016/鈥婼0894-9166(11)60002-5 CrossRef
    38.Chen Y, Lu J, Gao Z (2007) Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J Phys Chem C 111(4):1625鈥?630. doi:10.鈥?021/鈥媕p066030r CrossRef
    39.khaledian MMEM, Razal i I (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014(6). doi:10.鈥?155/鈥?014/鈥?62143
    40.Khaledian M, Ahmadi MT, Ismail R, Saeidmanesh M Structural and properties of graphene nanobelts rolled up into spiral by a single graphene sheet. J Comput Theor Nanosci 11(3):2014鈥?3-01T00:00:00 601鈥?06. doi:10.鈥?166/鈥媕ctn.鈥?014.鈥?401
    41.Mpourmpakis G, Tylianakis E, Froudakis GE (2007) Carbon nanoscrolls: a promising material for hydrogen storage. Nano Lett 7(7):1893鈥?897. doi:10.鈥?021/鈥媙l070530u . pMID: 17580924CrossRef
    42.Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, Dong M (2010) Fabrication of carbon nanoscrolls from monolayer graphene. Small 6(18):2010鈥?019. doi:10.鈥?002/鈥媠mll.鈥?01000646 CrossRef
    43.Lundstrom M, Guo J (2006) Basic concept, in nanoscale transistors: device physics, modeling and simulation, ed 233 Spring Street. Springer Science+Business Media, Inc, NY 10013, USA, pp 1鈥?0
    44.Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett 9(7):2565鈥?570. pMID: 19499895. doi:10.鈥?021/鈥媙l900677y CrossRef
    45.Rurali VRCR, Galvao DS Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations. Phys Rev B 74(8). doi:10.鈥?103/鈥婸hysRevB.鈥?4.鈥?85414
    46.Schaper AK, Hou H, Wang M, Bando Y, Golberg D (2011) Observations of the electrical behaviour of catalytically grown scrolled graphene. Carbon 49(6):1821鈥?828. doi:10.鈥?016/鈥媕.鈥媍arbon.鈥?010.鈥?2.鈥?66 CrossRef
    47.Uchida K, Saitoh M, Kobayashi S (2008) Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube fets and beyond. In: Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp 1鈥?. doi:10.鈥?109/鈥婭EDM.鈥?008.鈥?796753
    48.McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78鈥?5CrossRef
    49.Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21(1):29鈥?3. doi:10.鈥?002/鈥媋dma.鈥?00801995 CrossRef
    50.Mukherjee K, Majumder S (2014) Hydrogen sensing characteristics of nano-crystalline mg0. 5zn0. 5fe2o4 thin film: effect of film thickness and operating temperature. Int J Hydrog Energy 39(2):1185鈥?191CrossRef
    51.Peng N, Zhang Q, Lee YC, Tan OK, Marzari N (2008) Gate modulation in carbon nanotube field effect transistors-based NH 3 gas sensors. Sensors Actuators B Chem 132(1):191鈥?95CrossRef
    52.Abolgasim AA (2008) Classification of capital expenditures and revenue expenditures using neural network mqdel. Universiti Utara Malaysia
    53.Patterson DW (1998) Artificial neural networks: theory and applications. Prentice Hall PTR
    54.Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemometr Intell Lab Syst 39(1):43鈥?2. ElsevierCrossRef
    55.Zurada JM (1992) Introduction to artificial neural systems. West St. Paul
    56.Grossi E, Buscema M (2007) Introduction to artificial neural networks. Eur J Gastroenterol Hepatol 19(12):1046鈥?054. LWWCrossRef
    57.Yao X (1999) Evolving artificial neural networks. IEEE Proc 87(9):1423鈥?447. IEEECrossRef
    58.Khaledian M, Ismail R, Saeidmanesh M, Ghadiry M, Akbari E (2015) Sensitivity Modelling of Graphene Nanoscroll-Based NO2 Gas Sensors, Plasmonics, Graphene nanoscroll (GNS); Gas sensors; Carrier concentration; NO2 gas; Field effect transistor. doi:10.鈥?007/鈥媠11468-015-9905-6 . Springer US, pp 1鈥?
    59.Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J. Nanomaterials 2010:12:1鈥?2:4. doi:10.鈥?155/鈥?010/鈥?53738 CrossRef
    60.Ahmadi M, Johari Z, Amin N, Mousavi S, Ismail R (2010) Carbon nanotube conductance model in parabolic band structure. In: Semiconductor Electronics (ICSE), 2010 IEEE International Conference on, pp 256鈥?59. doi:10.鈥?109/鈥婼MELEC.鈥?010.鈥?549582 , (to appear in print)
    61.Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM-C (2011) Carbon dioxide gas sensor using a graphene sheet. Sensors Actuators B: Chem 157(1):310鈥?13. doi:10.鈥?016/鈥媕.鈥媠nb.鈥?011.鈥?3.鈥?35 . http://鈥媤ww.鈥媠ciencedirect.鈥媍om/鈥媠cience/鈥媋rticle/鈥媝ii/鈥婼092540051100231鈥? CrossRef
    62.Jilin X, Fang C, Jinghong L, Nongjian T (2009) Nongjian Measurement of the quantum capacitance of graphene. Nat Nano 1748-3387(4):505鈥?09. doi:10.鈥?038/鈥媙nano.鈥?009.鈥?77
    63.Peng N, Zhang Q, Chow CL, Tan OK, Marzari N (2009) Sensing mechanisms for carbon nanotube based nh3 gas detection. Nano Lett 9(4):1626鈥?630. doi:10.鈥?021/鈥媙l803930w CrossRef
    64.Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, Karimi H, Yusof R (2014) An analytical approach to evaluate the performance of graphene and carbon nanotubes for nh3 gas sensor applications. Beilstein J Nanotechnol 5:726鈥?34. doi:10.鈥?762/鈥媌jnano.鈥?.鈥?5 CrossRef
    65.Peng N, Zhang Q, Chow CL, Tan OK, Marzari N (2009) Sensing Mechanisms for Carbon Nanotube Based NH3 Gas Detection. Nano Lett 9(4):1626鈥?630. doi:10.鈥?021/鈥媙l803930w CrossRef
  • 作者单位:M. Khaledian (1)
    Razali Ismail (1)
    Elnaz Akbari (1)

    1. Department of Electronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Darul Takzim, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Graphene nanoscrolls (GNSs) as a new category of quasi one-dimensional (1D) belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of outstanding characteristics of GNSs in terms of structural and electronic properties such as high mobility, controllable band gap, and tunable core size. Previous studies have shown the fact that graphene different structures such as carbon nanotube (CNT), bilayer graphene (BLG) and GNS experience changes in the electrical conductivity when expose to various gases. Therefore, these materials are proposed as a promising candidate for gas detection sensors. These are typically constructed on a field effect transistor (FET) based structure in which the GNS is employed as the channel between the source and the drain. In this study, an analytical model has been proposed and developed with the initial assumption that the gate voltage is directly proportional to the gas concentration as well as its temperature. The effect of gas adsorption on GNS surface makes the changes in GNS conductance which leads to the changes in the current of sensor consequently. This phenomenon is considered as sensing mechanism with proposed sensing parameters. Using the corresponding formula for GNS conductance, the proposed mathematical model is derived. Also, artificial neural network (ANN) algorithms have also been incorporated to obtain other models for the current-voltage (I-V) characteristic in which the analytical data extracted from current and previous related works has been used as the training data set. The comparative study of the results from ANN and the analytical models with the experimental data in hand shows a satisfactory agreement which validates the proposed models. Keywords Graphene nanoscrolls (GNSs) Artificial neural network (ANN) N H 3 gas sensors I-V characteristic Field effect transistor (FET).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700