Fabrication and Photoelectric Properties of Large Area ZnO Nanorod with Au Nanospheres
详细信息    查看全文
  • 作者:Chun-Li Luo ; Wei-Guo Yan ; Jianhua Han ; Weiben Chen ; Jian Zhao ; Xin Wei…
  • 关键词:Self ; assemble ; Surface plasmon ; Nanostructure ; ZnO nanorods ; Gold nanosphere
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:131-137
  • 全文大小:1,844 KB
  • 参考文献:1.Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Seok SI, Nazeeruddin MK, Gratzel M (2010) High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett 10(7):2609–2612CrossRef
    2.Xu J, Yang X, Wang HK, Chen X, Luan CY, Xu ZX, Lu ZZ, Roy VAL, Zhang WJ, Lee CS (2011) Arrays of ZnO/ZnxCd1-xSe nanocables: Band gap engineering and photovoltaic applications. Nano Lett 11(10):4138–4143CrossRef
    3.Park SH, Kim SH, Han SW (2007) Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications. Nanotechnology 18(5):055608–055614CrossRef
    4.Han JH, Liu ZF, Guo KY, Ya J, Zhao YF, Zhang XQ, Hong TT, Liu JQ (2014) High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells. ACS Appl Mater Interfaces 6(19):17119–17125CrossRef
    5.Chen H-Y, Liu K-W, Jiang M-M, Zhang Z-Z, Xie X-H, Wang D-K, Liu L, Li B-H, Zhao D-X, Shan C-X, Shen D-Z (2014) Tunable enhancement of exciton emission from MgZnO by hybridized quadrupole plasmons in Ag nanoparticle aggregation. Appl Phys Lett 104(9):091119–091123CrossRef
    6.Zang Y, He X, Li J, Yin J, Li K, Yue C, Wu Z, Wu S, Kang J (2013) Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres. Nanoscale 5(2):574–580CrossRef
    7.Cheng CW, Sie EJ, Liu B, Huan CHA, Sum TC, Sun HD, Fan HJ (2010) Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl Phys Lett 96(7):071107–071109CrossRef
    8.Mahanti M, Basak D (2012) Highly enhanced UV emission due to surface plasmon resonance in Ag-ZnO nanorods. Chem Phys Lett 542:110–116CrossRef
    9.Mahanti M, Basak D (2014) Enhanced photoluminescence in Ag@SiO2 core-shell nanoparticles coated ZnO nanorods. J Lumin 154:535–540CrossRef
    10.Lin HY, Cheng CL, Chou YY, Huang LL, Chen YF, Tsen KT (2006) Enhancement of band gap emission stimulated by defect loss. Opt Express 14(6):2372–2379CrossRef
    11.Cheng P, Li D, Yuan Z, Chen P, Yang D (2008) Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl Phys Lett 92(4):041119–041121CrossRef
    12.Richters JP, Voss T, Kim DS, Scholz R, Zacharias M (2008) Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires. Nanotechnology 19(30):305202–305205CrossRef
    13.Lin JM, Lin HY, Cheng CL, Chen YF (2006) Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 17(17):4391–4394CrossRef
    14.Sakano T, Tanaka Y, Nishimura R, Nedyalkov NN, Atanasov PA, Saiki T, Obara M (2008) Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J Phys D Appl Phys 41(23):235304–235309CrossRef
    15.Chen ZH, Tang YB, Liu CP, Leung YH, Yuan GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113(30):13433–13437CrossRef
    16.Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRef
    17.Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217CrossRef
    18.Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225CrossRef
    19.Liu Z, Ya J, E L (2010) Effects of substrates and seed layers on solution growing ZnO nanorods. J Solid State Electrochem 14(6):957–963CrossRef
    20.Liu Z, E L, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 255(12):6415–6420CrossRef
    21.Yan WG, Qi JW, Li ZB, Tian JG (2014) Fabrication and optical properties of Au-coated polystyrene nanosphere arrays with controlled gaps. Plasmonics 9(3):565–571CrossRef
    22.Luo CL, Yan WG, Zhao J, Li Z-B, Tian J-G (2015) Surface plasmonic properties and fabrication of large area disordered and binary ordered au particle arrays. Superlattice Microst 85:92–100CrossRef
  • 作者单位:Chun-Li Luo (1)
    Wei-Guo Yan (2)
    Jianhua Han (3)
    Weiben Chen (2)
    Jian Zhao (1)
    Xin Wei (4)
    Jiwei Qi (4)
    Zhifeng Liu (3)

    1. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin, 300384, China
    2. School of Science, Tianjin Chengjian University, Tianjin, 300384, China
    3. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
    4. Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics School and School of Physics, Nankai University, Tianjin, 300457, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Novel gold nanospheres top-contact ZnO nanorods arrays were fabricated via combination of self-assemble nanosphere lithography and low-cost hydrothermal chemical method. Gold nanoparticles of different geometries are used to enhance the fluorescent properties of ZnO nanorods based on localized surface plasmonic resonances. The results show that defect-related emission intensity ratio of the ZnO nanorods arrays can be improved up to two orders, and the defect-related emission peak red-shifted from 577 to 623 nm. This improvement is attributed to the enhanced localized surface plasmonic absorption of gold nanoparticles, which implies a promising application in surface plasmonic enhanced spectra. Keywords Self-assemble Surface plasmon Nanostructure ZnO nanorods Gold nanosphere

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700