Repair and stabilization in confined nanoscale systems -inorganic nanowires within single-walled carbon nanotubes
详细信息    查看全文
  • 作者:Adelina Ilie (1)
    Simon Crampin (1)
    Lisa Karlsson (2)
    Mark Wilson (3)
  • 关键词:Filled carbon nanotubes ; nanowires ; repair ; high ; resolution transmission electron microscopy (HRTEM) ; density functional theory ; molecular dynamics
  • 刊名:Nano Research
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:12
  • 页码:833-844
  • 全文大小:767KB
  • 参考文献:1. Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. / Science 2000, / 289, 1324-326. CrossRef
    2. Ilie, A.; Bendall, J. S.; Nagaoka, K.; Egger, S.; Nakayama, T.; Crampin, S. Encapsulated inorganic nanostructures; A route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. / ACS Nano 2011, / 5, 2559-569. CrossRef
    3. Bishop, C. L.; Wilson, M. The filling of flexible carbon nanotubes by molten salts. / J. Mater. Chem. 2009, / 19, 2929-939. CrossRef
    4. Chamberlain, T. W.; Meyer, J. C.; Biskupek, J.; Leschner, J.; Santana, A.; Besley, N. A.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. / Nat. Chem. 2011, / 3, 732-37. CrossRef
    5. Chen, W.; Pan, X. L.; Willinger, M. -G.; Su, D. S.; Bao, X. H. Facile autoreduction of iron oxide/carbon nanotube encapsulates. / J. Am. Chem. Soc. 2006, / 128, 3136-137. CrossRef
    6. Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. / J. Am. Chem. Soc. 2012, / 134, 3073-079. CrossRef
    7. B?rrnert, F.; Gorantla, S.; Bachmatiuk, A.; Warner, J. H.; Ibrahim, I.; Thomas, J.; Gemming, T.; Eckert, J.; Cuniberti, G.; Büchner, B., et al. / In situ observations of self-repairing single-walled carbon nanotubes. / Phys. Rev. B 2010, / 81, 201401. CrossRef
    8. Suenaga, K.; Wakabayashi, H.; Koshino, M.; Sato, Y.; Urita, K.; Iijima, S. Imaging active topological defects in carbon nanotubes. / Nat. Nanotechnol. 2007, / 2, 358-60. CrossRef
    9. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. / Nature 2004, / 430, 870-73. CrossRef
    10. Ding, F.; Jiao, K.; Wu, M. Q.; Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. / Phys. Rev. Lett. 2007, / 98, 075503. CrossRef
    11. Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes; Atomistic simulations. / Phys. Rev. B 2006, / 74, 245420. CrossRef
    12. Warner, J. H.; Sch?ffel, F.; Zhong, G. F.; Rümmeli, M. H.; Buchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter-dependent stability of single-walled carbon nanotubes. / ACS Nano 2009, / 3, 1557-563. CrossRef
    13. Bendall, J. S.; Ilie, A.; Welland, M. E.; Sloan, J.; Green, M. L. H. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. / J. Phys. Chem. B 2006, / 110, 6569-573. CrossRef
    14. Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. / Nano Lett. 2007, / 7, 1532-535. CrossRef
    15. Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. / J. Appl. Phys. 2001, / 90, 3509-515. CrossRef
    16. Kobayashi, K.; Suenaga, K.; Saito, T.; Shinohara, H.; Iijima, S. Photoreactivity preservation of AgBr nanowires in confined nanospaces. / Adv. Mater. 2010, / 22, 3156-160. CrossRef
    17. Banhart, F. Irradiation effects in carbon nanostructures. / Rep. Prog. Phys. 1999, / 62, 1181-221. CrossRef
    18. Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Hampel, S.; Leonhardt, A.; Buchner, B.; Bando, Y. Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. / Nano Lett. 2008, / 8, 3120-125. CrossRef
    19. Baldoni, M.; Leoni, S.; Sgamellotti, A.; Seifert, G.; Mercuri, F. Formation, structure, and polymorphism of novel lowest-dimensional AgI nanoaggregates by encapsulation in carbon nanotubes. / Small 2007, / 3, 1730-734. CrossRef
    20. Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. / Small 2008, / 4, 587-91. CrossRef
    21. Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykk?, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene; Structure, bonding, and magnetism. / Phys. Rev. Lett. 2009, / 102, 126807. CrossRef
    22. Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. Capturing the motion of molecular nanomaterials encapsulated within carbon nano-tubes with ultrahigh temporal resolution. / ACS Nano 2009, / 3, 3037-044. CrossRef
    23. Koshino, M.; Solin, N.; Tanaka, T.; Isobe, H.; Nakamura, E. Imaging the passage of a single hydrocarbon chain through a nanopore. / Nat. Nanotechnol. 2008, / 3, 595-97. CrossRef
    24. Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. / ACS Nano 2010, / 4, 3422-428. CrossRef
    25. Ilie, A.; Egger, S.; Friedrichs, S.; Kang, D. J.; Green, M. L. H. Correlated transport and high resolution transmission electron microscopy investigations on inorganic-filled single-walled carbon nanotubes showing negative differential resistance. / Appl. Phys. Lett. 2007, / 91, 253124. CrossRef
    26. Zobelli, A.; Gloter, A.; Ewels, C. P.; Colliex, C. Shaping single walled nanotubes with an electron beam. / Phys. Rev. B 2008, / 77, 045410. CrossRef
    27. Rodriguez-Manzo, J. A.; Banhart, F. Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 ? diameter. / Nano Lett. 2009, / 9, 2285-289. CrossRef
    28. Sloan, J.; Wright, D. M.; Woo, H. G.; Bailey, S.; Brown, G.; York, A. P. E.; Coleman, K. S.; Hutchison, J. L.; Green, M. L. H. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. / Chem. Commun. 1999, 699-00.
    29. / CrystalMaker, 2.0; CrystalMaker Software; Oxford, 2006.
    30. Stadelmann, P. / JEMS, Interdisciplinary Centre for Electron Microscopy; EPFL, 2010.
    31. G?mez-Rodríguez, A.; Beltrán-del-Río, L. M.; Herrera-Becerra, R. Simula TEM; Multislice simulations for general objects. / Ultramicroscopy 2010, / 110, 95-04. CrossRef
    32. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. / Z. Kristallogr. 2005, / 220, 567-70. CrossRef
    33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. / Phys. Rev. Lett. 1996, / 77, 3865-868. CrossRef
    34. Hull, S.; Keen, D. A. Pressure-induced phase transitions in AgCl, AgBr, and AgI. / Phys. Rev. B 1999, / 59, 750-61. CrossRef
    35. Parrinello, M.; Rahman, A.; Vashishta, P. Structural transitions in superionic conductors. / Phys. Rev. Lett. 1983, / 50, 1073-076. CrossRef
    36. Tersoff, J. New empirical approach for the structure and energy of covalent systems. / Phys. Rev. B 1988, / 37, 6991-000. CrossRef
  • 作者单位:Adelina Ilie (1)
    Simon Crampin (1)
    Lisa Karlsson (2)
    Mark Wilson (3)

    1. Department of Physics & Centre for Graphene Science, University of Bath, Bath, BA2 7AY, UK
    2. Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
    3. Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
  • ISSN:1998-0000
文摘
Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700