Metal Support Interaction Effects on the Reducibility of Ir Nanoparticles on Titania Nanotubes
详细信息    查看全文
  • 作者:José A. Toledo-Antonio ; Carlos Angeles-Chávez…
  • 关键词:Iridium nanoparticles ; TiO2 nanotube ; Anatase ; Cyclohexene hydrogenation/dehydrogenation ; Metal support interaction
  • 刊名:Topics in Catalysis
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2-4
  • 页码:366-377
  • 全文大小:3,938 KB
  • 参考文献:1.Siegel RW, Hu E, Roco MC (Eds.) (1999) Nanostructure science and technology, Springer (former KluwerAcademic Publishers) Dordrecht, The Netherlands. http://​www.​wtec.​org/​loyola/​nano
    2.Förster S, Antonietti M (1998) Adv Mater 10:195–217CrossRef
    3.Trindade T, Brien PO, Pickett NL (2001) Chem Mater 13:3843–3858CrossRef
    4.Higatsberger MJ (1981) In: Marton C (ed) Advances in electronics and electron physics, vol 56. Academic Press, New York
    5.Narayanan R, El-Sayed MA (2004) J Am Chem Soc 126:7194–7195CrossRef
    6.Resasco DE, Haller GL (1982) Stud Surf Sci Catal 11:105–112CrossRef
    7.Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Science211:1121–1125CrossRef
    8.Haller GL, Resasco DE (1989) Adv Catal 36:173–235
    9.Resasco DE, Haller GL (1984) J Phys Chem 88:4552–4556CrossRef
    10.Do PT, Alvarez WE, Resasco DE (2006) J Catal 238:477–488CrossRef
    11.Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160–3163CrossRef
    12.Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Appl Phys Lett 79:3702–3704CrossRef
    13.Cheng C, Teng H (2004) Chem Mater 16:4352–4358CrossRef
    14.Toledo Antonio JA, Capula S, Cortés-Jácome MA, Angeles-Chávez C, López-Salinas E, Ferrat G, Navarrete J, Escobar J (2007) J Phys Chem C 111:10799–10805CrossRef
    15.Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Appl Catal B 84:112–118CrossRef
    16.Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Catal 235:10–17CrossRef
    17.Toledo-Antonio JA, Angeles-Chávez C, Cortés-Jacome MA, Cuauhtémoc-López I, López-Salinas E, Pérez-Luna M, Ferrat-Torres G (2012) Appl Catal A Gen 437:155–165CrossRef
    18.Rojas H, Borda G, Reyes P, Martínez JJ, Valencia J, Gacia Fierro JL (2008) Catal Today 133:699–705CrossRef
    19.Kluson P, Cerveny L (1995) Appl Catal A 128:33–40CrossRef
    20.Yang M, Rioux RM, Somorjai GA (2006) J Catal 237:255–266CrossRef
    21.Madon RJ, O´Connell JP, Boudart M (1978) AIChE J 24:904–910CrossRef
    22.Boudart M, Sajkkowski D (1991) J Trans Faraday Soc 92:57–67
    23.Gonzo EF, Boudart M (1978) J Catal 52:462–471CrossRef
    24.Kip BJ, Van Grondelle J, Martens JHA, Prins R (1986) Appl Catal 26:353–373CrossRef
    25.Huang YJ, Fung SC (1991) J Catal 131:378–384CrossRef
    26.Huang YJ, Fung SC, Gates WE, McVicker GB (1989) J Catal 118:192–202CrossRef
    27.Zhu H, Qin ZI, Shan WJ, Shen WJ, Wang JG (2004) J Catal 225:267–277CrossRef
    28.Huizinga T, Prins R (1983) J Phys Chem 87:2264–2267CrossRef
    29.Anderson AB, Ravimohan C, Mehandru SP (1987) Surf Sci 183:438–448CrossRef
    30.Toledo-Antonio JA, Cortés-Jacome MA, Navarrete J, Angeles-Chávez C, López-Salinas E, Rendón-Rivera A (2010) Catal Today 155:247–254CrossRef
    31.Miller JT, Meyers BL, Modica FS, Lane GS, Vaarkamp M, Koningsberger DC (1993) J Catal 143:395–408CrossRef
    32.Xu Z, Gates BC (1995) J Catal 154:335–344CrossRef
    33.Xu Z, Xiao FS, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Nature 372:346–348CrossRef
    34.Martin TP, Bergman T, Gohlich H, Lange T (1991) J Phys Chem 95:6421–6429CrossRef
    35.Bokhimi X, Zanella R, Angeles-Chávez C (2010) J Phys Chem 114:14101–14109
    36.Mulder CAM, Klomp JTJ (1985) J Phys Colloques 46:C4-111–C4-116. doi:10.​1051/​jphyscol:​1985412
    37.Van Zon FBM, Maloney SD, Gates BC, Koningsberger DC (1993) J Am Chem Soc 115:10317–10326CrossRef
    38.Rodriguez AG, Beltran LM (2001) Rev Latin Am Metal Mat 21:46–50
    39.Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C (2011) Catal Today 166:18–24CrossRef
    40.Frenkel AI, Hills CW, Nuzzo RG (2001) J Phys Chem B 105:12689–12703CrossRef
    41.Stakheev AY, Zhang Y, Ivanov AV, Baeva GN, Ramaker DE, Koningsberger DC (2007) J Phys Chem C 111:3938–3948CrossRef
    42.Ramaker DE, Teliska M, Zhang Y, Stakheev AY, Koningsberger DC (2003) Phys Chem Chem Phys 5:4492–4501CrossRef
    43.Boudart M (1969) Adv Catal 20:153–166
    44.Leclercq G, Boudart M (1981) J Catal 71:127–135CrossRef
    45.Boudart M, McConica MC (1989) J Catal 117:33–41CrossRef
    46.Zhao A, Gates BC (1996) J Am Chem Soc 118:2458–2469CrossRef
    47.Ramaker DE, Oudenhuijzen MK, Koningsberger DC (2005) J Phys Chem B 109:5608–5617CrossRef
  • 作者单位:José A. Toledo-Antonio (1)
    Carlos Angeles-Chávez (1)
    Ma. Antonia Cortés-Jácome (1)
    I. Cuauhtémoc-López (1)
    E. López-Salinas (1)
    Ma. Lourdes Mosqueira (1)
    G. Ferrat (1)

    1. Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas # 152, 07730, Mexico, DF, Mexico
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
H2IrCl6 was impregnated on three types of materials: (i) anatase TiO2 nanoparticles, (ii) anatase TiO2 nanotubes and as a comparison, (iii) alumina Al2O3, with a view to reveal the effect of the support on Ir nanoparticles size, dispersion, morphologies, metal support interaction (MSI), and eventually on the catalytic activity in the hydrogenation of cyclohexene (CHE) at 273–303 K. Particularly, we focused on TiO2 nanotubes as being scarcely examined as supports of Ir particles. Highly dispersed 1.3 nm half truncated cuboctahedral particles and full 1.4 nm cuboctahedral Ir nanoparticles on TiO2 nanoparticles and TiO2 nanotubes, respectively, were revealed by transmission electron microscopy and molecular modeling. These two, morphologically different TiO2 supports show different MSI to Ir nanoparticles, affecting their metallic character and catalytic performance during CHE hydrogenation. At 273 K, complete cuboctahedral Ir particles (on TiO2 nanotubes) showed a TOF of 4.7 s−1 which was slightly more active than truncated ones (on TiO2 nanoparticles and Al2O3) showing a TOF of 3.2–3.7 s−1. Iridium truncated nanoparticles were probably not completely reduced to Ir0 and exhibited poor metallic character due to an electronic screening at the metal support interaction, which explain the different TOF in CHE hydrogenation. Keywords Iridium nanoparticles TiO2 nanotube Anatase Cyclohexene hydrogenation/dehydrogenation Metal support interaction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700