Evolving Functional Expression of Permeability of Fly Ash by a New Evolutionary Approach
详细信息    查看全文
  • 作者:Ankit Garg (1)
    Akhil Garg (2)
    Jasmine Siu Lee Lam (2)

    1. Department of Civil Engineering
    ; Indian Institute of Technology (IIT) ; Guwahati ; 781039 ; India
    2. School of Civil and Environmental Engineering
    ; Nanyang Technological University ; 50 Nanyang Ave ; Singapore ; 639798 ; Singapore
  • 关键词:Permeability prediction ; Net stress prediction ; Void ratio ; Permeability modeling
  • 刊名:Transport in Porous Media
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:107
  • 期:2
  • 页码:555-571
  • 全文大小:583 KB
  • 参考文献:1. Ali, N., Rees, S.W.: Linear root water uptake. Malays. J. Civ. Eng. 21(2), 110鈥?24 (2009). ISSN 1823-7843
    2. Ali, N., Farshchi, I., Mu鈥檃zu, M.A., Rees, S.W.: Soil-root interaction and effects on slope stability analysis. Electron. J. Geotech. Eng. (EJGE) 17(C), 319鈥?28 (2012). ISSN 1089-3032
    3. Al-Anazi, AF, Gates, ID (2010) Support vector regression for porosity prediction in a heterogeneous reservoir: a comparativestudy. Comput. Geosci. 36: pp. 1494-1503 CrossRef
    4. Al-Anazi, AF, Gates, ID (2012) Support vector regression to predict porosity and permeability: effect of sample size. Comput. Geosci. 39: pp. 64-76 CrossRef
    5. Arshad, R.R., Sayyad, G., Mosaddeghi, M., Gharabaghi, B.: Predicting saturated hydraulic conductivity by artificial intelligence and regression models. ISRN Soil Sci. 2013, Article ID 308159 (2013). doi:10.1155/2013/308159
    6. Benson, CH, Zhai, H, Wang, X (1994) Estimation of hydraulic conductivity of compacted clay liners. J. Geotech. Eng. ASCE 20: pp. 366-387 CrossRef
    7. Biddle, P.G.: Tree Root Damage to Buildings. Volume 1: Causes, Diagnosis and Remedy. Volume 2: Patterns of Soil Drying in Proximity to Trees on Clay Soils. Willowmead Publishing Ltd., Wantage (1998)
    8. Blight, GE (2005) Desiccation of a clay by grass, bushes and trees. Geotech. Geol. Eng. 23: pp. 697-720 CrossRef
    9. Bolton, AJ (2000) Some measurements of permeability and effective stress on a heterogeneous soil mixture: implications for recovery of inelastic strains. Eng. Geol. 57: pp. 95-104 CrossRef
    10. Borges, C.E., Alonso, C.L., Montana, J.L.: Model selection in genetic programming. In: Proceedings of 12th Annual Conference on Genetic and Evolutionary Computation, pp. 985鈥?86. ACM (2010)
    11. Boroumand, A., Baziar, M.H.: Determination of compacted clay permeability by artificial neural networks. In: Ninth International Water Technology Conference, IWTC9, Sharm El-Sheikh, Egypt (2005)
    12. Byvatov, E, Schneider, G (2003) Support vector machine applications in bioinformatics. Appl. Bioinf. 2: pp. 67
    13. Cevik, A, Guzelbey, IH (2007) A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng. Struct. 29: pp. 383-394 CrossRef
    14. Cevik, A, Sonebi, M (2008) Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique. Comput. Concr. 5: pp. 475-91 CrossRef
    15. Chan, KY, Kwong, CK, Dillon, TS, Tsim, YC (2011) Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. Appl. Soft Comput. 11: pp. 1648-1656 CrossRef
    16. Chen, CH, Lin, ZS (2006) A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 32: pp. 485-496 CrossRef
    17. Cherkassky, V, Ma, Y (2003) Comparison of model selection for regression. Neural Comput. 15: pp. 1691-1714 CrossRef
    18. Das, S.K., Basudhar, P.K.: Prediction of hydraulic conductivity of clay liners using artificial neural network. Lowl. Technol. Int. Off. J. Int. Assoc. Lowl. Technol. (IALT)/Inst. Lowl. Technol. Saga Univ. 9(1), 50鈥?8 (2007)
    19. Fredlund, D.G., Morgenstern, N.R.: Stress state variables for unsaturated soils. J. Geotech. Geoenviron. Eng. 103(5), 447鈥?66 (1977)
    20. Fredlund, D.G., Rahardjo, H.: The role of unsaturated soil behaviour in geotechnical engineering practice. In: Proceedings of the 11th Southeast Asian Geotechnical Conference, pp. 37鈥?9 (1993)
    21. Fredlund, DG, Xing, A (1994) Equations for the soil鈥搘ater characteristic curve. Can. Geotech. J. 31: pp. 521-532 CrossRef
    22. Gandomi, AH, Alavi, AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf. Sci. 181: pp. 5227-5239 CrossRef
    23. Garg, A., Tai, K.: Review of genetic programming in modeling of machining processes. In: Proceedings of 2012 International Conference on Modelling, Identification and Control (ICMIC2012), Wuhan, China, 24鈥?6 June 2012, pp. 653鈥?58. IEEE (2012)
    24. Garg, A, Tai, K (2013) Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int. J. Model. Identif. Control 18: pp. 295-312 CrossRef
    25. Garg, A., Tai, K.: Genetic programming for modeling vibratory finishing process: role of experimental designs and fitness functions. In Swarm, Evolutionary, and Memetic Computing. Springer International Publishing, Berlin (2013b)
    26. Garg, A., Tai, K.: An ensemble approach of machine learning in evaluation of mechanical property of the rapid prototyping fabricated prototype. Appl. Mech. Mater. 575, 493鈥?96 (2014a)
    27. Garg, A, Tai, K (2014) Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process. Adv. Eng. Softw. 78: pp. 16-27 CrossRef
    28. Garg, A., Tai, K.: An improved multi-gene genetic programming approach for the evolution of generalized model in modelling of rapid prototyping process. In: Modern Advances in Applied Intelligence, pp. 218鈥?26. Springer (2014c). doi:10.1007/978-3-319-07455-9_23
    29. Garg, A., Leung, A.K., Ng, C.W.W., Hau, B.C. H.: Effects of plant transpiration on suction distribution in a vegetated soil slope. In: Unsaturated Soils: Research and Applications, pp. 351鈥?57. Springer, Berlin (2012)
    30. Garg, A., Rachmawati L., Tai, K.: Classification-driven model selection approach of genetic programming in modelling of turning process. Int. J. Adv. Manuf. Technol. (2013). doi:10.1007/s00170-013-5103-x
    31. Garg, A (2014) A computational intelligence-based genetic programming approach for the simulation of soil water retention curves. Transp. Porous Media 103: pp. 497-513 CrossRef
    32. Garg, A, Tai, K, Gupta, A (2014) A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica 49: pp. 1193-1209 CrossRef
    33. Garg, A., Tai, K., Savalani, M.: Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. Int. J. Adv. Manuf. Technol. 73(1鈥?), 375鈥?88 (2014c)
    34. Garg, A., et al.: Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach. Int. J. Adv. Manuf. Technol. 73(1鈥?), 113鈥?26 (2014d)
    35. Garg, A (2014) Combined CI-MD approach in formulation of engineering moduli of single layer graphene sheet. Simul. Model. Pract. Theory 48: pp. 93-111 CrossRef
    36. Garg, A., Vijayaraghavan, V., Wong, C., Tai, K., Sumithra, K., Mahapatra, S., Singru, P.M., Yao, L.: Application of artificial intelligence technique for modelling elastic properties of 2D nanoscale material. Mol. Simul. 1鈥?0 (2014f). doi:10.1080/08927022.2014.951351
    37. Gribb, M.M., Gribb, G.W.: Use of neural networks for hydraulic conductivity determination in unsaturated soil. In: Proceedings of the Second International Conference on Ground Water Ecology, Atlanta, Georgia, March 27鈥?0 (1994)
    38. Hearst, MA, Dumais, S, Osman, E, Platt, J, Scholkopf, B (1998) Support vector machines. Intell. Syst. Appl. IEEE 13: pp. 18-28 CrossRef
    39. Hinchliffe, M., Willis, M., Hiden, H., Tham, M., Mckay, B., Barton, G.: Modelling chemical process systems using a multi-gene genetic programming algorithm. In: Genetic Programming: Proceedings of the First Annual Conference (Late Breaking Papers), pp. 56鈥?5, MIT Press, Cambridge (1996a)
    40. Hinchliffe, M., Willis, M., Hiden, H., Tham, M., Mckay, B., Barton, G.: Modelling Chemical Process Systems Using a Multi-Gene Genetic Programming Algorithm鈥? Late Breaking Paper, Gp鈥?6. Stanford, USA (1996b)
    41. Kecman, V (2001) Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge, MA
    42. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. In: Genetic Programming Theory and Practice V, pp. 201鈥?20 (2008)
    43. Koza, JR (1996) On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA
    44. Kushchu, I (2002) Genetic programming and evolutionary generalization. IEEE Trans. Evol. Comput. 6: pp. 431-442 CrossRef
    45. Ravalec-Dupin, M, Veiga, S (2011) Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data. Comput. Geosci. 37: pp. 1400-1412 CrossRef
    46. Lee, CKM, Lam, JSL (2012) Managing reverse logistics to enhance sustainability of industrial marketing. Ind. Mark. Manag. 41: pp. 589-598 CrossRef
    47. Lim, D.K.H., Kolay, P.K.: Predicting hydraulic conductivity (k) of tropical soils by using Artificial Neural Network (ANN), Unimas E-Journal of Civil Engineering, vol. 1. Sarawak, Malaysia, ISBN 1985鈥?874 (2009)
    48. McBratney, AB, Minasny, B, Cattle, SR, Vervoort, RW (2002) From pedotransfer function to soil inference system. Geoderma 109: pp. 41-73 CrossRef
    49. Mitchell, JK (1993) Fundamentals of Soil Behavior. Wiley, New York
    50. Najjar, YM, Basheer, IA (1996) Utilizing computational neural networks for evaluating the permeability of compacted clay liners. Geotech. Geol. Eng. 14: pp. 193-212
    51. Pelckmans, K., Suykens, J.A.K., Vangestel, T., Brabanter, D.E., J., Lukas, L., Hamers, B., et al.: LS-SVMlab: A MATLAB/C Toolbox for Least Squares Support Vector Machines. Tutorial. KULeuven-ESAT, Leuven (2002)
    52. Rees, S.W., Ali, N.: Tree induced soil suction and slope stability. Geomech. Geoeng. 7(2), 103鈥?13 (2012). doi:10.1080/17486025.2011.631039 . ISSN 1748-6025
    53. Rowland, J (2003) Model selection methodology in supervised learning with evolutionary computation. Biosystems 72: pp. 187-196 CrossRef
    54. Sachan, A., Rao, K.: Permeability of Panki fly ash under stress. Int. J. Geotech. Eng. 4, 63鈥?0 (2010). doi:10.3328/IJGE.2010.04.01.63-70
    55. Saptoro, A, Tad茅, MO, Vuthaluru, H (2012) A modified Kennard鈥揝tone algorithm for optimal division of data for developing artificial neural network models. Chem. Prod. Process Model. 7: pp. 13
    56. Searson, D.P., Leahy, D.E., Willis, M.J.: GPTIPS: An open source genetic programming toolbox for multigene symbolic regression. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 77鈥?0 (2010)
    57. Sinha, SK, Wang, MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng. 26: pp. 47-64 CrossRef
    58. Vijayaraghavan, V., et al.: Density characteristics of laser-sintered three-dimensional printing parts investigated by using an integrated finite element analysis-based evolutionary algorithm approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2014a). doi:10.1177/0954405414558131
    59. Vijayaraghavan, V., et al.: An integrated computational approach for determining the elastic properties of boron nitride nanotubes. Int. J. Mech. Mater. Des. 1鈥?4 (2014b). doi:10.1007/s10999-014-9262-1
    60. Vijayaraghavan, V (2014) A molecular dynamics based artificial intelligence approach for characterizing thermal transport in nanoscale material. Thermochim. Acta 594: pp. 39-49 CrossRef
    61. Wosten, JHM (2001) Pachepsky, Ya., Rawls, W.J.: Pedotransfer function: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251: pp. 123-150 CrossRef
    62. Yao, Y, Liu, D, Tang, D, Tang, S, Huang, W, Liu, Z, Che, Y (2009) Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals. Comput. Geosci. 35: pp. 1159-1166 CrossRef
    63. Yildiz, AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot. Comput. Integr. Manuf. 25: pp. 261-270 CrossRef
    64. Yildiz, AR (2009) An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J. Mater. Process. Technol. 209: pp. 2773-2780 CrossRef
    65. Yildiz, AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf. Sci. 210: pp. 81-88 CrossRef
    66. Yildiz, AR (2013) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl. Soft Comput. 13: pp. 1561-1566 CrossRef
    67. Yildiz, AR (2013) A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl. Soft Comput. 13: pp. 2906-2912 CrossRef
    68. Yildiz, AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci 220: pp. 399-407 CrossRef
    69. Yildiz, AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 13: pp. 1433-1439 CrossRef
    70. Yildiz, AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 64: pp. 55-61 CrossRef
    71. Zhao, D, Zhu, Q (2014) Position synchronised control of multiple robotic manipulators based on integral sliding mode. Int. J. Syst. Sci. 45: pp. 556-570 CrossRef
    72. Zhang, J, Standifird, WB, Roegiers, JC, Zhang, Y (2007) Stress dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mech. Rock Eng. 40: pp. 3-21 CrossRef
    73. Zhao, D (2014) Synchronized control with neuro-agents for leader-follower based multiple robotic manipulators. Neurocomputing 124: pp. 149-161 CrossRef
    74. Zhao, D, Ni, W, Zhu, Q (2014) A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing 140: pp. 8-18 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
The influence of stress, which is one of the constitutive variables that governs unsaturated soil behavior, on the permeability has been recognized by various researchers. Stress factor is essential to study as it drastically alters the soil matrix which includes macropores, minipores and micropores and thus affecting the ability of soils to retain water and also permeability. An evolutionary approach of multi-gene genetic programming (MGGP), which automatically evolves model structure and coefficients can also be applied. However, the effective functioning of MGGP may be affected by the formulation of robust-multi-gene model and the poor selection of the best model. Therefore, a new evolutionary approach of MGGP (E-MGGP) is proposed by incorporating the stepwise and the classification strategies and applied to formulate the functional relationship between the permeability and input variables (stress and initial void ratio). The results reveal that the E-MGGP model outperformed the other three models (MGGP, support vector regression and artificial neural network). Further, the parametric and sensitivity analysis conducted validates the robustness of our proposed model by unveiling dominant input process variables and hidden nonlinear relationships.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700