Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation
详细信息    查看全文
  • 作者:Yota Tsuge ; Shogo Yamamoto ; Naoto Kato
  • 关键词:Corynebacterium glutamicum ; Oxygen deprivation ; D ; Lactic acid ; Metabolic engineering ; Glycolytic enzyme
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:99
  • 期:11
  • 页码:4679-4689
  • 全文大小:485 KB
  • 参考文献:Arai K, Hishida A, Ishiyama M, Kamata T, Uchikoba H, Fushinobu S, Matsuzawa H, Taguchi H (2002) An absolute requirement of fructose 1,6-bisphosphate for the Lactobacillus casei L -lactate dehydrogenase activity induced by a single amino acid substitution. Protein Eng 15:35-1
    Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109-21View Article PubMed
    Becker J, Zelder O, H?fner S, Schr?der H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for D -lysine production. Metab Eng 13:159-68
    Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300-310View Article PubMed Central PubMed
    Emmerling M, Bailey JE, Sauer U (2000) Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol Bioeng 67:623-27View Article PubMed
    Fukushima K, Chang YH, Kimura Y (2007) Enhanced stereocomplex formation of poly(L -lactic acid) and poly (D-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol Biosci 7:829-35
    Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in L and D -lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527-535
    Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L -valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250-257View Article PubMed Central PubMed
    Ikada Y, Jamshidi K, Tsuji H, Hyon S (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904-06View Article
    Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182-96View Article PubMed
    Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243-54View Article PubMed
    Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491-504View Article PubMed
    Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101:172-77
    Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L -alanine under oxygen deprivation. Appl Microbiol Biotechnol 87:159-65
    Joshi DS, Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for D -lactic acid production. Biotechnol Lett 32:517-20
    Karjomaa S, Suortti T, Lempiainen R, Selin J, Itavaara M (1998) Microbial degradation of poly-(L -lactic acid) oligomers. Polym Degrad Stab 59:333-36
    Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin Cummings, London, pp 115-46
    Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325-337View Article PubMed Central PubMed
    Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262-73View Article PubMed
    Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475-80View Article PubMed
    Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008a) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449-54View Article PubMed
    Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008b) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459-64View Article PubMed
    Papagianni M, Avramidis N (2011) Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzym Microb Technol 49:197-02View Article
    Pearce AK, Crimmins
  • 作者单位:Yota Tsuge (1)
    Shogo Yamamoto (1)
    Naoto Kato (1)
    Masako Suda (1)
    Alain A. Vertès (1)
    Hideaki Yukawa (1)
    Masayuki Inui (1) (2)

    1. Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
    2. Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
We previously reported on the impacts of the overexpression of individual genes of the glycolytic pathway encoding glucokinase (GLK), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase (FBA) on D-lactate productivity in Corynebacterium glutamicum under oxygen-deprived conditions. Searching for synergies, in the current study, we simultaneously overexpressed the five glycolytic genes in a stepwise fashion to evaluate the effect of the cumulative overexpression of glycolytic genes on D-lactate production. Interestingly, the final D-lactate concentration markedly differed depending on whether or not the PFK encoding gene was overexpressed when combined with overexpressing other glycolytic genes. The simultaneous overexpression of the GLK, GAPDH, TPI, and FBA encoding genes led to the highest initial D-lactate concentration at 10?h. However, this particular recombinant strain dramatically slowed producing D-lactate when a concentration of 1300?mM was reached, typically after 32?h. In contrast, the strain overexpressing the PFK encoding gene together with the GLK, GAPDH, TPI, and FBA encoding genes showed 12.7?% lower initial D-lactate concentration at 10?h than that observed with the strain overexpressing the genes coding for GLK, GAPDH, TPI, and FBA. However, this recombinant strain continued to produce D-lactate after 32?h, reaching 2169?mM after a mineral salts medium bioprocess incubation period of 80?h. These results suggest that overexpression of the PFK encoding gene is essential for achieving high production of D-lactate. Our findings provide interesting options to explore for using C. glutamicum for cost-efficient production of D-lactate at the industrial scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700