Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn.
详细信息    查看全文
  • 作者:S. Deepthi ; K. Satheeshkumar
  • 关键词:Plant growth regulators ; Callogenesis ; Elicitation ; Yeast extract ; AgNO3 ; HPLC
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:124
  • 期:3
  • 页码:483-493
  • 全文大小:847 KB
  • 参考文献:Ahmad S, Garg M, Tamboli ET, Abdin MZ, Ansari SH (2013) In vitro production of alkaloids: factors, approaches, challenges and prospects. Pharmacogn Rev 7:27–33. doi:10.​4103/​0973-7847.​112837 PubMedCentral CrossRef PubMed
    Ahmed SA, Baig MMV (2014) Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21:499–504. doi:10.​1016/​j.​sjbs.​2013.​12.​008 PubMedCentral CrossRef PubMed
    Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell Tissue Organ Cult 39:7–12. doi:10.​1007/​BF00037585 CrossRef
    Clarke-Pearson DL, Van Le L, Iveson T et al (2001) Oral topotecan as single-agent second-line chemotherapy in patients with advanced ovarian cancer. J Clin Oncol 19:3967–3975PubMed
    Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416. doi:10.​1007/​s002800050997 CrossRef PubMed
    Di Francesco AM, Riccardi A, Barone G et al (2005) The novel lipophilic camptothecin analogue gimatecan is very active in vitro in human neuroblastoma: a comparative study with SN38 and topotecan. Biochem Pharmacol 70:1125–1136. doi:10.​1016/​j.​bcp.​2005.​07.​009 CrossRef PubMed
    Eckardt JR, von Pawel J, Pujol JL et al (2007) Phase III study of oral compared with intravenous topotecan as second-line therapy in small-cell lung cancer. J Clin Oncol 25:2086–2092. doi:10.​1200/​JCO.​2006.​08.​3998 CrossRef PubMed
    Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152. doi:10.​1055/​s-2001-11519 CrossRef PubMed
    Funk C, Gügler K, Brodelius P (1987) Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry 26:401–405. doi:10.​1016/​S0031-9422(00)81421-1 CrossRef
    Hahn MG, Albersheim P (1978) Host-pathogen interactions: XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol 62:107–111. doi:10.​1104/​pp.​62.​1.​107 PubMedCentral CrossRef PubMed
    Hertzberg RP, Busby RW, Caranfa MJ et al (1990) Irreversible trapping of the DNA-topoisomerase I covalent complex. Affinity labeling of the camptothecin binding site. J Biol Chem 265:19287–19295PubMed
    Higuchi K, Tanabe S, Shimada K et al (2014) Biweekly irinotecan plus cisplatin versus irinotecan alone as second-line treatment for advanced gastric cancer: a randomised phase III trial (TCOG GI-0801/BIRIP trial). Eur J Cancer 50:1437–1445. doi:10.​1016/​j.​ejca.​2014.​01.​020 CrossRef PubMed
    Hombe Gowda HC, Vasudeva R, Mathachen GP, Uma Shaanker R, Ganeshaiah KN (2002) Breeding types in Nothapodytes nimmoniana Graham: an important medicinal tree. Curr Sci 83:1077–1078
    Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMed
    Huang B, Cheng JK, Wu CY et al (2015) Camptothecin promotes the production of nitric oxide that triggers subsequent S-nitrosoproteome-mediated signaling cascades in endothelial cells. Vascul Pharmacol. doi:10.​1016/​j.​vph.​2015.​07.​014
    Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20. doi:10.​4103/​0975-7406.​92725 PubMedCentral CrossRef PubMed
    Jisha KG (2006) A study on the production of camptothecin from Ophiorrhiza mungos and Nothapodytes Foetida using cell and tissue culture. Dissertation, Mahatma Gandhi University
    Kang SM, Min JY, Kim YD, Karigar CS, Kim SW, Goo GH, Choi MS (2009) Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol 139:84–88. doi:10.​1016/​j.​jbiotec.​2008.​09.​007 CrossRef PubMed
    Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369. doi:10.​1007/​s11816-012-0270-z CrossRef
    Karwasara VS, Jain R, Tomar P, Dixit VK (2010) Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol Plant 46:354–362. doi:10.​1007/​s11627-010-9278-7 CrossRef
    Kubeš J, Tůmová L, Martin J, Vildova A, Hendrychova H, Sojkova K (2014) The production of isoflavonoids in Genista tinctoria L. cell suspension culture after abiotic stressors treatment. Nat Prod Res 28:2253–2263. doi:10.​1080/​14786419.​2014.​938336 CrossRef PubMed
    Lee-Parsons CW, Ertürk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26:1595–1599. doi:10.​1023/​B:​BILE.​0000045825.​37395.​94 CrossRef PubMed
    Li S, Zhang W, Northrup K, Zhang D (2014) Distribution of camptotheca decaisne: endangered status. Pharmaceutical Crops 5:135–139. doi:10.​2174/​2210290601405010​135 CrossRef
    Liu YQ, Li WQ, Morris-Natschke SL et al (2015) Perspectives on biologically active camptothecin derivatives. Med Res Rev 35:753–789. doi:10.​1002/​med.​21342 CrossRef PubMed
    Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441. doi:10.​1007/​s00299-003-0708-4 CrossRef PubMed
    Lu M, Wong H, Teng W (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677. doi:10.​1007/​s002990100378
    Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG (1972) Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 56:95–101PubMed
    Mulabagal V, Tsay HS (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48
    Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79
    Namdeo AG, Priya T, Bhosale BB (2012) Micropropagation and production of camptothecin form in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed 2:S662–S666. doi:10.​1016/​S2221-1691(12)60292-5 CrossRef
    Pan XW, Shi YY, Liu X, Gao X, Lu YT (2004) Influence of inorganic microelements on the production of camptothecin with suspension cultures of Camptotheca acuminata. Plant Growth Regul 44:59–63. doi:10.​1007/​s10725-004-1654-z CrossRef
    Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258. doi:10.​1016/​S0141-0229(99)00137-4 CrossRef PubMed
    Rajan R, Varghese SC, Kurup R, Gopalakrishnan R, Venkataraman R, Satheeshkumar K, Baby S (2013) Search for Camptothecin-yielding Ophiorrhiza species from southern Western Ghats in India: a HPTLC-densitometry study. Ind Crops Prod 43:472–476. doi:10.​1016/​j.​indcrop.​2012.​07.​054 CrossRef
    Rischer H, Häkkinen ST, Ritala A et al (2013) Plant cells as pharmaceutical factories. Curr Pharm Des 19:5640–5660CrossRef PubMed
    Saito K, Sudo H, Yamasaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271. doi:10.​1007/​s002990100320 CrossRef
    Sakato K, Tanaka H, Mukai N, Misawa M (1974) Isolation and Identification of Camptothecin from Cells of Camptotheca acuminata Suspension Cultures. Agric Biol Chem 38:217–218. doi:10.​1080/​00021369.​1974.​10861136 CrossRef
    Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P (2005) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119:60–69. doi:10.​1016/​j.​jbiotec.​2005.​06.​012 CrossRef PubMed
    Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106:445–454. doi:10.​1007/​s11240-011-9942-6 CrossRef
    Sasaki Y, Hamaguchi T, Arai T et al (2014) Phase I study of combination therapy with irinotecan, leucovorin, and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for advanced colorectal cancer in Japanese patients. Anticancer Res 34:2029–2034PubMed
    Silja PK, Gisha GP, Satheeshkumar K (2014) Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tissue Organ Cult 119:469–477. doi:10.​1007/​s11240-014-0547-8 CrossRef
    Sirikantaramas S, Asano T, Sudo H, Yamasaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202CrossRef PubMed
    Song SH, Byun SY (1998) Elicitation of camptothecin production in cell cultures of Camptotheca acuminata. Biotechnol Bioprocess Eng 3:91–95. doi:10.​1007/​BF02932509 CrossRef
    Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SP (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908. doi:10.​1016/​j.​bmc.​2005.​05.​066 CrossRef PubMed
    Tafur S, Nelson JD, DeLong DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262PubMed
    Uday Bhanu M, Kondapi AK (2010) Neurotoxic activity of a topoisomerase-I inhibitor, camptothecin, in cultured cerebellar granule neurons. Neurotoxicology 31:730–737. doi:10.​1016/​j.​neuro.​2010.​06.​008 CrossRef PubMed
    Van Hengel AJ, Harkes MP, Wichers HJ, Hesselink PGM, Buitelaar RM (1992) Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tissue Organ Cult 28:11–18. doi:10.​1007/​BF00039910 CrossRef
    Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. R Br Plant Cell Tissue Organ Cult 108:27–35. doi:10.​1007/​s11240-011-0008-6 CrossRef
    Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257. doi:10.​1016/​j.​biortech.​2014.​12.​106 CrossRef PubMed
    Walker TS, Pal Bais H, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293. doi:10.​1016/​S0031-9422(02)00074-2 CrossRef PubMed
    Wall ME, Wani MC, Cook CE, Palmer AT, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 1,2. J Am Chem Soc 88:3888–3890. doi:10.​1021/​ja00968a057 CrossRef
    Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5. doi:10.​1186/​s40643-014-0033-5 CrossRef
    Westover D, Ling X, Lam H et al (2015) FL118, a novel camptothecin derivative, is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance. Mol Cancer 14:92. doi:10.​1186/​s12943-015-0362-9 PubMedCentral CrossRef PubMed
    Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268. doi:10.​1111/​j.​1467-7652.​2011.​00664.​x PubMedCentral CrossRef PubMed
    Wink M, Alfermann W, Franke R et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genetic Resour Charact Util 3:90–100. doi:10.​1079/​PGR200575 CrossRef
    Yan Q, Hu Z, Tan RX, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424. doi:10.​1016/​j.​jbiotec.​2005.​04.​020 CrossRef PubMed
    Yeo CD, Lee SH, Kim JS et al (2013) A multicenter phase II study of belotecan, a new camptothecin analogue, in elderly patients with previously untreated, extensive-stage small cell lung cancer. Cancer Chemother Pharmacol 72:809–814. doi:10.​1007/​s00280-013-2256-0 CrossRef PubMed
    Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2015) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol. doi:10.​3109/​07388551.​2014.​923986
  • 作者单位:S. Deepthi (1)
    K. Satheeshkumar (1)

    1. Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, 695 562, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5044
文摘
Production of camptothecin (CPT), an anticancer compound was enhanced in the cell suspension cultures of Ophiorrhiza mungos Linn. through elicitor treatment. Cell suspension culture was established using the friable callus tissues induced from the field grown leaf explants cultured in MS solid media supplemented with 3 % sucrose, 3 mg L−1 1-Naphthaleneacetic acid (NAA), 1 mg L−1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.5 mg L−1 kinetin (KIN). The callus tissues were used for establishing cell suspension culture in half-strength MS (1/2X MS) liquid media supplemented with the same hormone concentration. NAA was found to be essential for the prolific growth of O. mungos cells in suspension culture. Influence of different elicitors such as yeast extract (YE) and silver nitrate (AgNO3) on cell growth, CPT accumulation and cell viability was studied and found that YE and AgNO3 caused a significant increase in biomass and CPT yield according to their concentration, incubation time and feeding time. A maximum of 13.3-fold increment in CPT production and threefold increase in cell growth were recorded in cell cultures elicited with 50 mg L−1 YE on the 10th day of incubation. Cell growth and CPT level were found to decrease in the cultures treated with high concentration of elicitors. CPT was estimated using high performance liquid chromatography (HPLC). The results obtained in the present investigation suggest the use of elicitation as a promising alternative method to increase CPT production and cell growth in the cell suspension cultures of O. mungos. Keywords Plant growth regulators Callogenesis Elicitation Yeast extract AgNO3 HPLC

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700