Spontaneous inward currents reflecting oscillatory activation of Na+/Ca2+ exchangers in human embryonic stem cell-derived cardiomyocytes
详细信息    查看全文
  • 作者:Seong Woo Choi ; Hyang-Ae Lee ; Sung-Hwan Moon…
  • 关键词:Embryonic stem cell ; Heart ; Pacemaker current ; NCX ; Ca2+ release
  • 刊名:Pfl¨¹gers Archiv - European Journal of Physiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:468
  • 期:4
  • 页码:609-622
  • 全文大小:2,319 KB
  • 参考文献:1.Bhat MB, Zhao J, Zang W, Balke CW, Takeshima H, Wier WG, Ma J (1997) Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J Gen Physiol 110:749–62CrossRef PubMed PubMedCentral
    2.Dan P, Lin E, Huang J, Biln P, Tibbits GF (2007) Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development. Biophys J 93:2504–2518CrossRef PubMed PubMedCentral
    3.Fu JD, Jiang P, Rushing S, Liu J, Chiamvimonvat N, Li RA (2010) Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev 19:773–782CrossRef PubMed PubMedCentral
    4.Gao Z, Chen B, Joiner ML, Wu Y, Guan X, Koval OM, Chaudhary AK, Cunha SR, Mohler PJ, Martins JB, Song LS, Anderson ME (2010) If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells. J Mol Cell Cardiol 49:33–40CrossRef PubMed PubMedCentral
    5.Gao Z, Rasmussen TP, Li Y, Kutschke W, Koval OM, Wu Y, Wu Y, Hall DD, Joiner ML, Wu XQ, Swaminathan PD, Purohit A, Zimmerman K, Weiss RM, Philipson KD, Song LS, Hund TJ, Anderson ME (2013) Genetic inhibition of Na+-Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circ Res 112:309–317CrossRef PubMed PubMedCentral
    6.Groenke S, Larson ED, Alber S, Zhang R, Lamp ST, Ren X, Nakano H, Jordan MC, Karagueuzian HS, Roos KP, Nakano A, Proenza C, Philipson KD, Goldhaber JI (2013) Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PLoS One 8:e81633CrossRef PubMed PubMedCentral
    7.Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, Delgado SM, Wakatsuki T, Crone WC, Pruitt BL, Palecek SP (2012) Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol 2012:508294CrossRef PubMed PubMedCentral
    8.He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93:32–39CrossRef PubMed
    9.Ju YK, Allen DG (1998) Intracellular calcium and Na+-Ca2+ exchange current in isolated toad pacemaker cells. J Physiol 508(Pt 1):153–166CrossRef PubMed PubMedCentral
    10.Kim C, Majdi M, Xia P, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen HS (2010) Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 19:783–795CrossRef PubMed PubMedCentral
    11.Kurata Y, Hisatome I, Imanishi S, Shibamoto T (2002) Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am J Physiol Heart Circ Physiol 283:H2074–2101CrossRef PubMed
    12.Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673CrossRef PubMed PubMedCentral
    13.Li S, Chen G, Li RA (2013) Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol 591:5279–5290CrossRef PubMed PubMedCentral
    14.Liu J, Fu JD, Siu CW, Li RA (2007) Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells 25:3038–3044CrossRef PubMed
    15.Macia E, Boyden PA (2009) Stem cell therapy is proarrhythmic. Circulation 119:1814–1823CrossRef PubMed PubMedCentral
    16.Maltsev VA, Lakatta EG (2009) Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol 296:H594–615CrossRef PubMed PubMedCentral
    17.Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, Puceat M (2005) Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. Mol Biol Cell 16:2414–2423CrossRef PubMed PubMedCentral
    18.Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM (2013) The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 34:4013–4026CrossRef PubMed
    19.Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740CrossRef PubMed
    20.Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358CrossRef PubMed PubMedCentral
    21.Niu CF, Watanabe Y, Ono K, Iwamoto T, Yamashita K, Satoh H, Urushida T, Hayashi H, Kimura J (2007) Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur J Pharmacol 573:161–169CrossRef PubMed
    22.Paci M, Sartiani L, Del Lungo M, Jaconi M, Mugelli A, Cerbai E, Severi S (2012) Mathematical modelling of the action potential of human embryonic stem cell derived cardiomyocytes. Biomed Eng Online 11:61CrossRef PubMed PubMedCentral
    23.Qu Y, Ghatpande A, El-Sherif N, Boutjdir M (2000) Gene expression of Na+/Ca2+ exchanger during development in human heart. Cardiovasc Res 45:866–873CrossRef PubMed
    24.Sakakibara Y, Wasserstrom JA, Furukawa T, Jia H, Arentzen CE, Hartz RS, Singer DH (1992) Characterization of the sodium current in single human atrial myocytes. Circ Res 71:535–546CrossRef PubMed
    25.Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25:1136–1144CrossRef PubMed
    26.Sasse P, Zhang J, Cleemann L, Morad M, Hescheler J, Fleischmann BK (2007) Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells. J Gen Physiol 130:133–144CrossRef PubMed PubMedCentral
    27.Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972CrossRef PubMed
    28.Viatchenko-Karpinski S, Gyorke S (2001) Modulation of the Ca2+-induced Ca2+ release cascade by beta-adrenergic stimulation in rat ventricular myocytes. J Physiol 533:837–848CrossRef PubMed PubMedCentral
    29.Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, Deo S, Barlow M, Johnson S, Caffrey JL, Zhou YY, Xiao RP, Cheng H, Stern MD, Maltsev VA, Lakatta EG (2006) High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res 98:505–514CrossRef PubMed
    30.Wang Y, Li ZC, Zhang P, Poon E, Kong CW, Boheler KR, Huang Y, Li RA, Yao X (2015) Nitric oxide-cGMP-PKG pathway acts on orai1 to inhibit the hypertrophy of human embryonic stem cell-derived cardiomyocytes. Stem Cells 33:2973–84CrossRef PubMed
    31.Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114:511–523CrossRef PubMed PubMedCentral
    32.Yaniv Y, Sirenko S, Ziman BD, Spurgeon HA, Maltsev VA, Lakatta EG (2013) New evidence for coupled clock regulation of the normal automaticity of sinoatrial nodal pacemaker cells: bradycardic effects of ivabradine are linked to suppression of intracellular Ca2+ cycling. J Mol Cell Cardiol 62:80–89CrossRef PubMed PubMedCentral
    33.Zahanich I, Sirenko SG, Maltseva LA, Tarasova YS, Spurgeon HA, Boheler KR, Stern MD, Lakatta EG, Maltsev VA (2011) Rhythmic beating of stem cell-derived cardiac cells requires dynamic coupling of electrophysiology and Ca cycling. J Mol Cell Cardiol 50:66–76CrossRef PubMed PubMedCentral
    34.Zhang YM, Hartzell C, Narlow M, Dudley SC Jr (2002) Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 106:1294–1299CrossRef PubMed
  • 作者单位:Seong Woo Choi (1)
    Hyang-Ae Lee (1) (3)
    Sung-Hwan Moon (4)
    Soon-Jung Park (4)
    Hae Jin Kim (1) (2)
    Ki-Suk Kim (1) (3)
    Yin Hua Zhang (1) (2)
    Jae Boum Youm (5)
    Sung Joon Kim (1) (2)

    1. Department of Physiology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
    3. Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
    4. Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
    2. Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
    5. Department of Physiology, College of Medicine, Inje University, Busan, Republic of Korea
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
Na+/Ca2+ exchanger current (INCX) triggered by spontaneous Ca2+ release from sarcoplasmic reticulum (SR) has been suggested as one of the cardiac pacemaker mechanisms (“Ca2+ clock model”). In human embryonic stem cell-derived cardiomyocytes (hESC-CMs) showing spontaneous action potentials (APs), we found that substantial population (35 %) showed regular oscillation of inward currents (SICs) in nystatin-perforated voltage clamp between −40 and 40 mV (−80 ± 10.6 pA, at −20 mV). SICs were similarly observed between nodal, atrial, and ventricular hESC-CMs. Oscillations of [Ca2+]i synchronized with SICs were observed under voltage clamp. SICs were eliminated by lowering [Ca2+]e, L-type Ca2+ channel (VOCCL) blocker (nifedipine, 10 µM), ryanodine receptor (RyR) agonist (caffeine, 10 mM), or NCX inhibitor (1 µM SN-6 and 10 µM KB-R7943). Plasma membrane expression of NCX1 was confirmed using immunofluorescence confocal microcopy. Both caffeine and SN-6 slowed the pacemaker potential but did not abolish the AP generation. The inhibitors of funny current (3 µM ivabradine) or voltage-gated K+ channel currents (1 µM E4031 and 10 µM chromanol-293B) also did not abolish but slowed the pacemaker potential. In a computational model of cardiac pacemaker by Maltsev and Lakatta (2009), after modifying the spatial distribution of RyR, VOCCL, and NCX by using our multiparameter adjust algorithm, we could successfully reproduce spontaneous SR Ca2+ release and SICs under voltage clamp. It was proposed that, under the membrane depolarization activating VOCCL, oscillatory Ca2+ releases via RyR induce sharp increases in subsarcolemmal [Ca2+]i and inward INCX (SICs). Since the hESC-CMs without SICs still showed spontaneous APs, the putative “Ca2+ clock” would provide a redundant pacemaker or augmenting mechanism in hESC-CMs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700