Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes
详细信息    查看全文
  • 作者:Jiazhang Wei ; Yasuhide Watanabe…
  • 关键词:Nicorandil ; KATP channel opener ; Na+/Ca2+ exchange current (I NCX) ; Cardiac myocytes ; Cyclic GMP
  • 刊名:Pfl¨¹gers Archiv - European Journal of Physiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:468
  • 期:4
  • 页码:693-703
  • 全文大小:1,037 KB
  • 参考文献:1.Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M et al (2011) SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson’s disease. Neuropharmacology 61:1441–1451CrossRef PubMed
    2.Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G et al (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513CrossRef PubMed
    3.Asano S, Matsuda T, Takuma K, Kim HS, Sato T, Nishikawa T, Baba A (1995) Nitroprusside and cyclic GMP stimulate Na+-Ca2+ exchange activity in neuronal preparations and cultured astrocytes. J Neurochem 64:2437–2441CrossRef PubMed
    4.Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281CrossRef PubMed
    5.Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMed
    6.Despa S, Brette F, Orchard CH, Bers DM (2003) Na/Ca exchange Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J 85:3388–3396CrossRef PubMed PubMedCentral
    7.Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266:12337–12341PubMed
    8.He Z, Petesch N, Voges KP, Röben W, Phillipson KD (1997) Identification of important amino acid residues of the Na+-Ca2+ exchanger inhibitory peptide, XIP. J Membr Biol 156:149–156CrossRef PubMed
    9.Hiraoka M, Fan Z (1989) Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther 250:278–285PubMed
    10.Hothi SS, Thomas G, Killeen MJ, Grace AA, Huang CLH (2009) Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome. Pflugers Arch Eur J Physiol 458:819–835CrossRef
    11.Horie M, Suzuki H, Hayashi S, Zang W-J, Komori M, Okada Y et al (1991) Nicorandil reduced the basal level of cytosolic free calcium in single guinea pig ventricular myocytes. Cell Struct Funct 16:433–440CrossRef PubMed
    12.Horinaga S, Kobayashi N, Higashi T, Hara K, Hara S, Matsuoka H (2001) Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. J Cardiovasc Pharmacol 38:200–210CrossRef
    13.Imanishi S, Arita M, Aomine M, Kiyosue T (1984) Antiarrhythmic effects of nicorandil on canine cardiac Purkinje fibers. J Cardiovasc Pharmacol 6:772–779CrossRef PubMed
    14.Ishizuka N, Saito K, Akima M, Matsubara S, Saito M (2000) Hypotensive interaction of sildenafil and nicorandil in rats through the cGMP pathway but not by KATP channel activation. Jpn J Pharmacol 84:316–324CrossRef PubMed
    15.Iwamoto T, Nakamura TY, Pan Y, Uehara A, Imanaga I, Shigekawa M (1999) Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett 446:64–268CrossRef
    16.Janvier NC, Boyett MR (1996) The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 32:69–84CrossRef PubMed
    17.Kitano T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T et al (2010) The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 57:58–66CrossRef
    18.Kimura J, Noma A, Irisawa H (1986) Na-Ca exchange current in mammalian heart cells. Nature 319:596–597CrossRef PubMed
    19.Kobayashi S, Nakaya H, Takizawa T, Hara Y, Kimura S, Saito T et al (1996) Endothelin-1 partially inhibits ATP-sensitive K+ current in guinea pig ventricular cells. J Cardiovasc Pharmacol 27:12–19CrossRef PubMed
    20.Kobayashi Y, Miyata A, Tanno K, Kikushima S, Baba T, Katagiri T (1998) Effects of nicorandil, a potassium channel opener, on idiopathic ventricular tachycardia. J Am Coll Cardiol 32:1377–1383CrossRef PubMed
    21.Komori S, Ishii M, Hashimoto K (1985) Antiarrhythmic effects of coronary vasodilators on canine ventricular arrhythmia models. Jpn J Pharmacol 38:73–82CrossRef PubMed
    22.Kukovetz WR, Holzmann S, Braida C, Pöch G (1991) Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization. J Cardiovasc Pharmacol 17:627–633CrossRef PubMed
    23.Lathrop DA, Nànàsi PP, Varrò A (1990) In vitro cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil. Br J Pharmacol 99:119–123CrossRef PubMed PubMedCentral
    24.Liou JY, Hong HJ, Sung LC, Chao HH, Chen TH, Chan P et al (2011) Nicorandil inhibits angiotensin-II-induced proliferation of cultured rat cardiac fibroblasts. Pharmacology 87:144–151CrossRef PubMed
    25.Matchkov VV, Gustafsson H, Rahman A, Boedtkjer DMB, Gorintin S, Hansen AK et al (2007) Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication. Circ Res 100:1026–1035CrossRef PubMed
    26.Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA (1991) Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 17:903–912CrossRef PubMed
    27.Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39CrossRef PubMed
    28.Newgreen DT, Bray KM, McHarg AD, Weston AH, Duty S, Brown BS et al (1990) The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol 100:605–613CrossRef PubMed PubMedCentral
    29.Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274:910–917CrossRef PubMed
    30.Nishida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59:51–58CrossRef
    31.Nishimura J (2006) Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchanger in the vasodilator-induced vasorelaxation. J Pharmacol Sci 102:27–31CrossRef PubMed
    32.Nishimura N, Reisen Y, Matsumoto A, Ogura T, Miyata Y, Suzuki K et al (2010) Effects of nicorandil on the cAMP-dependent Cl− current in guinea pig ventricular cells. J Pharmacol Sci 112:415–423CrossRef PubMed
    33.Niu CF, Watanabe Y, Ono K, Iwamoto T, Yamashita K, Satoh H et al (2007) Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur J Pharmacol 573:161–169CrossRef PubMed
    34.Pan Y, Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M (2000) Physiological functions of the regulatory domains of cardiac Na+/Ca2+ exchanger NCX1. Am J Physiol Cell Physiol 279:C393–C402PubMed
    35.Ren X, Philipson KD (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57:68–71CrossRef PubMed PubMedCentral
    36.Reppel M, Fleischmann BK, Reuter H, Sasse P, Schunkert H, Hescheler J (2007) Regulation of the Na+/Ca2+ exchanger (NCX) in the murine embryonic heart. Cardiovasc Res 75:99–108CrossRef PubMed
    37.Secondo A, Molinaro P, Pannaccione A, Esposito A, Cantile M, Lippiello P et al (2011) Nitric oxide stimulates NCX1 and NCX2 but inhibits NCX3 isoform by three distinct molecular determinants. Mol Pharmacol 79:558–568CrossRef PubMed
    38.Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG (1988) The potassium channel opening action of pinacidil; studies using biochemical, ion flux and microelectrode techniques. Naunyn Schmiedeberg Arch Pharmacol 338:310–318CrossRef
    39.Szerencsei RT, Kinjo TG, Schnetkamp PPM (2013) The topology of the C-terminal sections of the NCX1 Na+/Ca2+ exchanger and the NCKX2 Na+/Ca2+-K+ exchanger. Channels 7:109–114CrossRef PubMed PubMedCentral
    40.Watanabe I, Okamura Y, Ohkubo K, Nagashima K, Mano H, Sonoda K et al (2011) Effect of ATP-sensitive K+ channel opener nicorandil in a canine model of proarrhythmia. Int Heart J 52:318–322CrossRef PubMed
    41.Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T et al (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132:1317–1325CrossRef PubMed PubMedCentral
    42.Watanabe Y, Iwamoto T, Shigekawa M, Kimura J (2002) Inhibitory effect of aprindine on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 136:361–366CrossRef PubMed PubMedCentral
    43.Watanabe Y, Iwamoto T, Matsuoka I, Ono T, Shigekawa M, Kimura J (2004) Effects of amiodarone on mutant Na+/Ca2+ exchangers expressed in CCL 39 cells. Eur J Pharmacol 496:49–54CrossRef PubMed
    44.Weisser-Thomas J, Nguyen Q, Schuettel M, Thomas D, Dreiner U, Grohé C et al (2007) Age and hypertrophy related changes in contractile post-rest behavior and action potential properties in isolated rat myocytes. AGE 29:205–217CrossRef PubMed PubMedCentral
    45.William M, Vien J, Hamilton E, Garcia A, Bundgaard H, Clarke RJ, Rasmussen HH (2005) The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. J Physiol 565:815–825CrossRef PubMed PubMedCentral
    46.Yamakawa T, Watanabe Y, Watanabe H, Kimura J (2012) Inhibitory effect of cibenzoline on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. J Pharmacol Sci 120:59–62CrossRef PubMed
    47.Yanagisawa T, Hashimoto H, Taira N (1988) The negative inotropic effect of nicorandil is independent of cyclic GMP changes: a comparison with pinacidil and cromakalim in canine atrial muscle. Br J Pharmacol 95:393–398CrossRef PubMed PubMedCentral
    48.Zhang YH, Hancox JC (2009) Regulation of cardiac Na+-Ca2+ exchange activity by protein kinase phosphorylation—still a paradox? Cell Calcium 45:1–10CrossRef PubMed
  • 作者单位:Jiazhang Wei (1)
    Yasuhide Watanabe (2)
    Kazuhiko Takeuchi (1)
    Kanna Yamashita (2)
    Miyuki Tashiro (2)
    Satomi Kita (3)
    Takahiro Iwamoto (3)
    Hiroshi Watanabe (1)
    Junko Kimura (4)

    1. Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
    2. Division of Pharmacological Science, Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
    3. Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
    4. Department of Pharmacology, Fukushima Medical University, Fukushima, 960-1295, Japan
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
Nicorandil, a hybrid of an ATP-sensitive K+ (KATP) channel opener and a nitrate generator, is used clinically for the treatment of angina pectoris. This agent has been reported to exert antiarrhythmic actions by abolishing both triggered activity and spontaneous automaticity in an in vitro study. It is well known that delayed afterdepolarizations (DADs) are caused by the Na+/Ca2+ exchange current (I NCX). In this study, we investigated the effect of nicorandil on the cardiac Na+/Ca2+ exchanger (NCX1). We used the whole-cell patch clamp technique and the Fura-2/AM (Ca2+ indicator) method to investigate the effect of nicorandil on I NCX in isolated guinea pig ventricular myocytes and CCL39 fibroblast cells transfected with dog heart NCX1. Nicorandil enhanced I NCX in a concentration-dependent manner. The EC50 (half-maximum concentration for enhancement of the drug) values were 15.0 and 8.7 μM for the outward and inward components of I NCX, respectively. 8-Bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), a membrane-permeable analog of guanosine 3′,5′-cyclic monophosphate (cGMP), enhanced I NCX. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor (10 μM), completely abolished the nicorandil-induced I NCX increase. Nicorandil increased I NCX in CCL39 cells expressing wild-type NCX1 but did not affect mutant NCX1 without a long intracellular loop between transmembrane segments (TMSs) 5 and 6. Nicorandil at 100 μM abolished DADs induced by electrical stimulation with ouabain. Nicorandil enhanced the function of NCX1 via guanylate cyclase and thus may accelerate Ca2+ exit via NCX1. This may partially contribute to the cardioprotection by nicorandil in addition to shortening action potential duration (APD) by activating KATP channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700