The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha
详细信息    查看全文
  • 作者:Taeho Kim ; Jiyeon Kim ; Steven A. Nadler ; Joong-Ki Park
  • 关键词:Koerneria sudhausi ; Diplogasteromorpha ; Nematoda ; Mitochondrial genome ; Molecular phylogeny
  • 刊名:Current Genetics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 页码:391-403
  • 全文大小:4,518 KB
  • 参考文献:Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRef PubMed
    Andrássy I (1976) Evolution as a basis for the systematization of nematodes. Pitman, London
    Bar-Eyal M, Sharon E, Spiegel Y, Oka Y (2008) Laboratory studies on the biocontrol potential of the predatory nematode Koerneria sudhausi (Nematoda: Diplogastridae). Nematology 10:633–637CrossRef
    Bento G, Ogawa A, Sommer RJ (2010) Co-option of the hormone signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466:494–497CrossRef PubMed
    Bert W, Leliaert F, Vierstraete AR, Vanfleteren JR, Borgonie G (2008) Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhabditida). Mol Phylogenet Evol 48:728–744CrossRef PubMed
    Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75CrossRef PubMed
    Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780CrossRef PubMed PubMedCentral
    Chitwood BG, Chitwood MB (1974) Introduction to Nematology. University Park Press, Baltimore
    Dams E, Hendriks L, Van de Peer Y, Neefs JM, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16s:r87–r173CrossRef
    De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee BL (ed) The biology of nematodes. Taylor, New York, pp 1–30CrossRef
    De Ley P, Blaxter M (2004) A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. In: Cook R, Hunt DJ (eds) Nematology monographs and perspectives, vol 2. Brill, Baltimore, pp 633–653
    De Rijk P, Robbrecht E, de Hoog S, Caers A, Van de Peer Y, De Wachter R (1999) Database on the structure of large subunit ribosomal RNA. Nucleic Acids Res 24:174–178CrossRef
    Filipjev IN (1935) The classification of the free-living nematodes and their relation to the parasitic nematodes. Smithson Misc Collect 89:1–63
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMed
    Fürst von Lieven A (2008) Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components. Nematology 10:27–45CrossRef
    Gibson T, Farrugia D, Barrett J, Chitwood DJ, Rowe J, Subbotin S, Dowton M (2011) The mitochondrial genome of the soybean cyst nematode, Heterodera glycines. Genome 54:565–574CrossRef PubMed
    Gutell RR, Gray MW, Schare MN (1993) A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 21:3055–3074CrossRef PubMed PubMedCentral
    He Y, Jones J, Armstrong M, Lamberti F, Moens M (2005) The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in length and structural features of encoded genes. J Mol Evol 61:819–833CrossRef PubMed
    Hegedusova E, Brejova B, Tomaska L, Sipiczki M, Nosek J (2014) Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis. Curr Genet 60:49–59CrossRef PubMed
    Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800CrossRef PubMed
    Hu M, Chilton NB, Gasser RB (2003) The mitochondrial genome of Strongyloides stercoralis (Nematoda)—idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408CrossRef PubMed
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRef PubMed
    Jacob JE, Vanholme B, Van Leeuwen T, Gheysen G (2009) A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Res Notes 2:192CrossRef PubMed PubMedCentral
    Jex AR, Waeschenbach A, Hu M, van Wyk JA, Beveridge I, Littlewood DT, Gasser RB (2009) The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum—two hookworms of animal health and zoonotic importance. BMC Genom 10:79CrossRef
    Jex AR, Hall RS, Littlewood DT, Gasser RB (2010) An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 38:522–533CrossRef PubMed PubMedCentral
    Kang S, Sultana T, Eom KS, Park YC, Soonthornpong N, Nadler SA, Park JK (2009) The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)—an idiosyncratic gene order and phylogenetic information for chromadorean nematodes. Gene 429:87–97CrossRef PubMed
    Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127CrossRef PubMed
    Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35:370–379CrossRef
    Kim KH, Eom KS, Park JK (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36:319–328CrossRef PubMed
    Kim T, Kim J, Cho S, Min G, Park C, Carreno RA, Nadler SA, Park J (2014) Phylogeny of Rhigonematomorpha based on the complete mitochondrial genome of Rhigonema thysanophora (Nematoda: Chromadorea). Zool Scr 43:289–303CrossRef
    Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157:621–637PubMed PubMedCentral
    Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19:163–169CrossRef PubMed
    Liu G, Wang Y, Xu M, Zhou D, Ye Y, Li J, Song H, Lin R, Zhu X (2012a) Characterization of the complete mitochondrial genomes of two whipworms Trichuris ovis and Trichuris discolor (Nematoda: Trichuridae). Infect Genet Evol 12:1635–1641CrossRef PubMed
    Liu GH, Gasser RB, Su A, Nejsum P, Peng L, Lin RQ, Li MW, Xu MJ, Zhu XQ (2012b) Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets. PLoS Negl Trop Dis 6:e1539CrossRef PubMed PubMedCentral
    Liu GH, Gasser RB, Nejsum P, Wang Y, Chen Q, Song HQ, Zhu XQ (2013a) Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered francois’ leaf-monkey. PLoS One 8:e66249CrossRef PubMed PubMedCentral
    Liu GH, Shao R, Li JY, Zhou DH, Li H, Zhu XQ (2013b) The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genom 14:414CrossRef
    Lorenzen S (1994) The phylogenetic systematics of free living nematodes. Ray Society, London
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRef PubMed PubMedCentral
    Maggenti A (1981) General nematology. Springer, New YorkCrossRef
    Maggenti A (1983) Nematode higher classification as influenced by species and family concepts. In: Stone AR, Platt HM, Khalil LF (eds) Concepts in nematode systematics. Academic Press, London, pp 25–40
    Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636CrossRef PubMed
    Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE). IEEE, New Orleans, pp 1–8
    Molnar RI, Bartelmes G, Dinkelacker I, Witte H, Sommer RJ (2011) Mutation rates and intraspecific divergence of the mitochondrial genome of Pristionchus pacificus. Mol Biol Evol 28:2317–2326CrossRef PubMed
    Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala
    Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498PubMed PubMedCentral
    Okimoto R, Macfarlane JL, Wolstenholme DR (1994) The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 39:598–613CrossRef PubMed
    Park J, Sultana T, Lee S, Kang S, Kim HK, Min G, Eom KS, Nadler SA (2011) Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics 12:392CrossRef PubMed PubMedCentral
    Serobyan V, Ragsdale EJ, Müller MR, Sommer RJ (2013) Feeding plasticity in the nematode Pristionchus pacificus is influenced by sex and social context and is linked to developmental speed. Evol Dev 15:161–170CrossRef PubMed
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRef PubMed PubMedCentral
    Sultana T, Kim J, Lee SH, Han H, Kim S, Min GS, Nadler SA, Park JK (2013) Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. BMC Evol Biol 13:12CrossRef PubMed PubMedCentral
    Susoy V, Ragsdale E, Kanzaki N, Sommer R (2015) Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. eLife. http://​elifesciences.​org/​content/​elife/​4/​e05463.​full.​pdf . Accessed 04 Feb 2015
    Tanaka Y, Tsuda M, Yasumoto K, Terachi T, Yamagishi H (2014) The complete mitochondrial genome sequence of Brassica oleracea and analysis of coexisting mitotypes. Curr Genet 60:277–284CrossRef PubMed
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRef PubMed PubMedCentral
    Van Megen H, Van Den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950CrossRef
    Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539CrossRef PubMed PubMedCentral
    Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216CrossRef PubMed
    Zhang D, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120CrossRef
  • 作者单位:Taeho Kim (1)
    Jiyeon Kim (2)
    Steven A. Nadler (3)
    Joong-Ki Park (2)

    1. Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
    2. Division of EcoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
    3. Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbial Genetics and Genomics
    Microbiology
    Biochemistry
    Cell Biology
    Plant Sciences
    Proteomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0983
文摘
Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700