Non-neural tyrosine hydroxylase, via modulation of endocrine pancreatic precursors, is required for normal development of beta cells in the mouse pancreas
详细信息    查看全文
  • 作者:Patricia Vázquez ; Ana M. Robles ; Flora de Pablo ; Catalina Hernández-Sánchez
  • 关键词:Beta cells ; Catecholamines ; Dopamine ; Glucagon ; Insulin ; Islet development ; Neurogenin 3 ; Tyrosine hydroxylase
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:57
  • 期:11
  • 页码:2339-2347
  • 全文大小:2,554 KB
  • 参考文献:1. Collombat P, Xu X, Heimberg H, Mansouri A (2010) Pancreatic beta-cells: from generation to regeneration. Semin Cell Dev Biol 21:838-44 CrossRef
    2. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443-52 38/nbt1393" target="_blank" title="It opens in new window">CrossRef
    3. Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25:5-3 3.03.016" target="_blank" title="It opens in new window">CrossRef
    4. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998-021 CrossRef
    5. Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4-5 CrossRef
    6. Heinis M, Simon MT, Duvillie B (2010) New insights into endocrine pancreatic development: the role of environmental factors. Horm Res Paediatr 74:77-2 314894" target="_blank" title="It opens in new window">CrossRef
    7. Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111-27 CrossRef
    8. Ahlgren U, Jonsson J, Edlund H (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122:1409-416
    9. Guz Y, Montminy MR, Stein R et al (1995) Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121:11-8
    10. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128-34 38/ng959" target="_blank" title="It opens in new window">CrossRef
    11. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530-65 CrossRef
    12. Attali M, Stetsyuk V, Basmaciogullari A et al (2007) Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248-258 337/db06-1307" target="_blank" title="It opens in new window">CrossRef
    13. Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685-05 CrossRef
    14. Cano DA, Soria B, Martin F, Rojas A (2014) Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 71:2383-402 3-1510-2" target="_blank" title="It opens in new window">CrossRef
    15. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607-611 3/pnas.97.4.1607" target="_blank" title="It opens in new window">CrossRef
    16. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447-457
    17. Sussel L, Kalamaras J, Hartigan-O’Connor DJ et al (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125:2213-221
    18. Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877-81 38/23716" target="_blank" title="It opens in new window">CrossRef
    19. Jensen J, Heller RS, Funder-Nielsen T et al (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49:163-76 337/diabetes.49.2.163" target="_blank" title="It opens in new window">CrossRef
    20. Jensen J, Pedersen EE, Galante P et al (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36-4 38/71657" target="_blank" title="It opens in new window">CrossRef
    21. Lee JC, Smith SB, Watada H et al (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50:928-36 337/diabetes.50.5.928" target="_blank" title="It opens in new window">CrossRef
    22. Teitelman G, Lee JK (1987) Cell lineage analysis of pancreatic islet development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev Biol 121:454-66 CrossRef
    23. O’Keeffe GC, Barker RA, Caldwell MA (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8:2888-894 CrossRef
    24. Fitch SR, Kimber GM, Wilson NK et al (2012) Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11:554-66 CrossRef
    25. Lopez-Sanchez C, Bartulos O, Martinez-Campos E et al (2010) Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovasc Res 88:111-20 3/cvr/cvq179" target="_blank" title="It opens in new window">CrossRef
    26. Zhou QY, Quaife CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640-43 38/374640a0" target="_blank" title="It opens in new window">CrossRef
    27. Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A (2011) Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 240:589-04 CrossRef
    28. Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317-322
    29. Herrera PL, Huarte J, Zufferey R et al (1994) Ablation of islet endocrine cells by targeted expression of hormone-promoter-driven toxigenes. Proc Natl Acad Sci U S A 91:12999-3003 3/pnas.91.26.12999" target="_blank" title="It opens in new window">CrossRef
    30. Desgraz R, Herrera PL (2009) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136:3567-574 39214" target="_blank" title="It opens in new window">CrossRef
    31. Watada H, Scheel DW, Leung J, German MS (2003) Distinct gene expression programs function in progenitor and mature islet cells. J Biol Chem 278:17130-7140 3196200" target="_blank" title="It opens in new window">CrossRef
    32. Teitelman G, Joh TH, Reis DJ (1981) Linkage of the brain-skin-gut axis: islet cells originate from dopaminergic precursors. Peptides 2(Suppl 2):157-68 CrossRef
    33. Teitelman G, Joh TH, Reis DJ (1981) Transformation of catecholaminergic precursors into glucagon (A) cells in mouse embryonic pancreas. Proc Natl Acad Sci U S A 78:5225-229 3/pnas.78.8.5225" target="_blank" title="It opens in new window">CrossRef
    34. Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D (1993) Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118:1031-039
    35. Wilson ME, Kalamaras JA, German MS (2002) Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 115:171-76 3(02)00118-1" target="_blank" title="It opens in new window">CrossRef
    36. Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189-11 CrossRef
    37. Jonakait GM, Markey KA, Goldstein M, Black IB (1984) Transient expression of selected catecholaminergic traits in cranial sensory and dorsal root ganglia of the embryonic rat. Dev Biol 101:51-0 CrossRef
    38. Bramswig NC, Kaestner KH (2011) Transcriptional regulation of alpha-cell differentiation. Diabetes Obes Metab 13(Suppl 1):13-0 3-1326.2011.01440.x" target="_blank" title="It opens in new window">CrossRef
    39. Filippi A, Jainok C, Driever W (2012) Analysis of transcriptional codes for zebrafish dopaminergic neurons reveals essential functions of Arx and Isl1 in prethalamic dopaminergic neuron development. Dev Biol 369:133-49 CrossRef
    40. Stott SR, Metzakopian E, Lin W, Kaestner KH, Hen R, Ang SL (2013) Foxa1 and foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J Neurosci 33:8022-034 3/JNEUROSCI.4774-12.2013" target="_blank" title="It opens in new window">CrossRef
    41. Ohta Y, Kosaka Y, Kishimoto N et al (2011) Convergence of the insulin and serotonin programs in the pancreatic beta-cell. Diabetes 60:3208-216 337/db10-1192" target="_blank" title="It opens in new window">CrossRef
    42. Rukstalis JM, Habener JF (2009) Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets 1:177-84 3.9877" target="_blank" title="It opens in new window">CrossRef
    43. Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135:2151-160 CrossRef
    44. Ostrom M, Loffler KA, Edfalk S et al (2008) Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One 3:e2841 371/journal.pone.0002841" target="_blank" title="It opens in new window">CrossRef
    45. Johansson KA, Dursun U, Jordan N et al (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457-65 CrossRef
    46. Shih HP, Kopp JL, Sandhu M et al (2012) A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139:2488-499 34" target="_blank" title="It opens in new window">CrossRef
    47. Afelik S, Qu X, Hasrouni E et al (2012) Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells. Development 139:1744-753 CrossRef
    48. Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393-10 322" target="_blank" title="It opens in new window">CrossRef
    49. Costes S, Langen R, Gurlo T, Matveyenko AV, Butler PC (2013) β-Cell failure in type 2 diabetes: a case of asking too much of too few? Diabetes 62:327-35 337/db12-1326" target="_blank" title="It opens in new window">CrossRef
    50. Hernandez-Sanchez C, Mansilla A, de la Rosa EJ, de Pablo F (2006) Proinsulin in development: new roles for an ancient prohormone. Diabetologia 49:1142-150 32-5" target="_blank" title="It opens in new window">CrossRef
  • 作者单位:Patricia Vázquez (1) (2)
    Ana M. Robles (1)
    Flora de Pablo (1) (2)
    Catalina Hernández-Sánchez (1) (2)

    1. 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
    2. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain http://www.ciberdem.org/
  • ISSN:1432-0428
文摘
Aims/hypothesis Apart from transcription factors, little is known about the molecules that modulate the proliferation and differentiation of pancreatic endocrine cells. The early expression of tyrosine hydroxylase (TH) in a subset of glucagon+ cells led us to investigate whether catecholamines have a role in beta cell development. Methods We studied the immunohistochemical characteristics of TH-expressing cells in wild-type (Th +/+ ) mice during early pancreas development, and analysed the endocrine pancreas phenotype of TH-deficient (Th ??/em> ) mice. We also studied the effect of dopamine addition and TH-inhibition on insulin-producing cells in explant cultures. Results In the mouse pancreas at embryonic day (E)12.5–E13.5, the ?0% of early glucagon+ cells that co-expressed TH rarely proliferated and did not express the precursor marker neurogenin 3 at E13.5. The number of insulin+ cells in the Th ??/em> embryonic pancreas was decreased as compared with wild-type embryos at E13.5. While no changes in pancreatic and duodenal homeobox 1 (PDX1)+-progenitor cell number were observed between groups at E12.5, the number of neurogenin 3 and NK2 homeobox 2 (NKX2.2)-expressing cells was reduced in Th ??/em> embryonic pancreas, an effect that occurred in parallel with increased expression of the transcriptional repressor Hes1. The potential role of dopamine as a pro-beta cell stimulus was tested by treating pancreas explants with this catecholamine, which resulted in an increase in total insulin content and insulin+ cells relative to control explants. Conclusions/interpretation A non-neural catecholaminergic pathway appears to modulate the pancreatic endocrine precursor and insulin producing cell neogenesis. This finding may have important implications for approaches seeking to promote the generation of beta cells to treat diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700