The Neuroligins and Their Ligands: from Structure to Function at the Synapse
详细信息    查看全文
  • 作者:Yves Bourne (1)
    Pascale Marchot (1)
  • 关键词:Acetylcholinesterase ; Adhesion ; α/β ; hydrolase ; Autism ; Complex ; Ectodomain ; Enzyme ; Model ; Neurexin ; Neuroligin ; Partnership ; Structure ; Synapse
  • 刊名:Journal of Molecular Neuroscience
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:53
  • 期:3
  • 页码:387-396
  • 全文大小:694 KB
  • 参考文献:1. Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3:a009712 CrossRef
    2. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699-11 CrossRef
    3. Ara? D, Boucard AA, Ozkan E, Strop P, Newell E, Südhof TC, Brunger AT (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1β complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 56:992-003 CrossRef
    4. Aricescu AR, Siebold C, Choudhuri K, Chang VT, Lu W, Davis SJ, van der Merwe PA, Jones EY (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317:1217-220 CrossRef
    5. Barrow SL, Constable JR, Clark E, El-Sabeawy F, McAllister AK, Washbourne P (2009) Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Dev 4:17 CrossRef
    6. Berson A, Knobloch M, Hanan M, Diamant S, Sharoni M, Schuppli D, Geyer BC, Ravid R, Mor TS, Nitsch RM, Soreq H (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109-19 CrossRef
    7. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Südhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48:229-36 CrossRef
    8. Bourne Y, Taylor P, Radi? Z, Marchot P (2003) Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J 22:1-2 CrossRef
    9. Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26:1738-748 CrossRef
    10. Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A, Kim HS, Fukazawa Y, Harada H, Tabuchi K, Shigemoto R, Scheiffele P, Kim JH (2013) Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci U S A 110:725-30 CrossRef
    11. Carlson CB, Bernstein DA, Annis DS, Misenheimer TM, Hannah BL, Mosher DF, Keck JL (2005) Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 12:910-14 CrossRef
    12. Chen X, Liu H, Shim AH, Focia PJ, He X (2008) Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 15:50-6 CrossRef
    13. Chen F, Venugopal V, Murray B, Rudenko G (2011) The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Structure 19:779-89 CrossRef
    14. Comoletti D, Flynn RE, Boucard AA, et al (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. Biochenmistry 45, 12816-2827
    15. Comoletti D, Grishaev A, Whitten AE, Tsigelny I, Taylor P, Trewhella J (2007) Synaptic arrangement of the neuroligin/β-neurexin complex revealed by X-ray and neutron scattering. Structure 15:693-05 CrossRef
    16. Comoletti D, Miller MT, Jeffries CM, Wilson J, Demeler B, Taylor P, Trewhella J, Nakagawa T (2010) The macromolecular architecture of extracellular domain of αNRXN1: domain organization, flexibility, and insights into trans-synaptic disposition. Structure 18:1044-053 CrossRef
    17. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR 3rd, Comoletti D, Taylor P, Ghosh A (2009) LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron 64:799-06
    18. Dinamarca MC, Weinstein D, Monasterio O, Inestrosa NC (2011) The synaptic protein neuroligin-1 interacts with the amyloid β-peptide. Is there a role in Alzheimer’s disease? Biochemistry 50:8127-437 CrossRef
    19. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-132 CrossRef
    20. Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, Bourne Y, Marchot P (2007) Structural analysis of the synaptic protein neuroligin and its β-neurexin complex: determinants for folding and cell adhesion. Neuron 56:979-91 CrossRef
    21. Harrison D, Hussain SA, Combs AC, Ervasti JM, Yurchenco PD, Hohenester E (2007) Crystal structure and cell surface anchorage sites of laminin α1LG4-5. J Biol Chem 282:11573-1581 CrossRef
    22. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt KF, Sassoè-Pognetto M, L?wel S, Moser T, Taschenberger H, Brose N, Varoqueaux F (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 108:3053-058 CrossRef
    23. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof TC (1995) Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell 81:435-43 CrossRef
    24. Ichtchenko K, Nguyen T, Südhof TC (1996) Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 271:2676-682 CrossRef
    25. Iida J, Hirabayashi S, Sato Y, Hata Y (2004) Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci 27:497-08 CrossRef
    26. Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J 275:625-32 CrossRef
    27. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Südhof TC (1997) Binding of neuroligins to PSD-95. Science 277:1511-515 CrossRef
    28. Jamain S, Quach H, Betancur C, R?stam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T, Paris Autism Research International Sibpair Study (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(27):29
    29. Johnson G, Moore SW (2004) Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem Biophys Res Commun 319:448-55 CrossRef
    30. Johnson G, Swart C, Moore SW (2008) Interaction of acetylcholinesterase with the G4 domain of the laminin α1-chain. Biochem J 411:507-14 CrossRef
    31. Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475:249-53 CrossRef
    32. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC, Quade BJ, Gusella JF (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82:199-07 CrossRef
    33. Ko J, Fuccillo MV, Malenka RC, Südhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64:791-98 CrossRef
    34. Koehnke J, Jin X, Budreck EC, Posy S, Scheiffele P, Honig B, Shapiro L (2008) Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2. Proc Natl Acad Sci U S A 105:1873-878 CrossRef
    35. Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B, Shapiro L, Jin X (2010) Splice form dependence of β-neurexin/neuroligin binding interactions. Neuron 67:61-4 CrossRef
    36. Lawler J, Derick LH, Connolly JE, Chen JH, Chao FC (1985) The structure of human platelet thrombospondin. J Biol Chem 260:3762-772
    37. Lee K, Kim Y, Lee SJ, Qiang Y, Lee D, Lee HW, Kim H, Je HS, Südhof TC, Ko J (2013) MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc Natl Acad Sci U S A 110:336-41 CrossRef
    38. Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429 CrossRef
    39. Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2014) Tracking the origin and divergence of cholinesterases and neuroligins: the evolution of synaptic proteins. J Mol Neurosci. in press.
    40. Leone P, Comoletti D, Ferracci G, Conrod S, Garcia SU, Taylor P, Bourne Y, Marchot P (2010) Structural insights into the exquisite selectivity of neurexin/neuroligin synaptic interactions. EMBO J 29:2461-471 CrossRef
    41. Lim SH, Kwon SK, Lee MK, Moon J, Jeong DG, Park E, Kim SJ, Park BC, Lee SC, Ryu SE, Yu DY, Chung BH, Kim E, Myung PK, Lee JR (2009) Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn. EMBO J 28:3564-578 CrossRef
    42. Linhoff MW, Laurén J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61:734-49 CrossRef
    43. Litwack ED, Babey R, Buser R, Gesemann M, O’Leary DD (2004) Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 25:263-74 CrossRef
    44. Matsuda K, Yuzaki M (2011) Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci 33:1447-461 CrossRef
    45. Miller MT, Mileni M, Comoletti D, Stevens RC, Harel M, Taylor P (2011) The crystal structure of the α-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function. Structure 19:767-78 CrossRef
    46. Misenheimer TM, Huwiler KG, Annis DS, Mosher DF (2000) Physical characterization of the procollagen module of human thrombospondin 1 expressed in insect cells. J Biol Chem 275:40938-0945 CrossRef
    47. Missler M, Hammer RE, Südhof TC (1998) Neurexophilin binding to α-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem 273:34716-4723 CrossRef
    48. Nguyen T, Südhof TC (1997) Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J Biol Chem 272:26032-6039 CrossRef
    49. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351-365 CrossRef
    50. Paraoanu LE, Layer PG (2004) Mouse acetylcholinesterase interacts in yeast with the extracellular matrix component laminin-1β. FEBS Lett 576:161-64 CrossRef
    51. Pettem KL, Yokomaku D, Takahashi H, Ge Y, Craig AM (2013) Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J Cell Biol 200:321-36 CrossRef
    52. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628-42 CrossRef
    53. Reissner C, Runkel F, Missler M (2013) Neurexins. Genome Biol 14:213 CrossRef
    54. Rudenko G, Hohenester E, Muller YA (2001) LG/LNS domains: multiple functions -one business end? Trends Biochem Sci 26:363-68
    55. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318-26 CrossRef
    56. Savtchenko LP, Rusakov DA (2007) The optimal height of the synaptic cleft. Proc Natl Acad Sci U S A 104:1823-828 CrossRef
    57. Schr?dinger, LLC (2010) The PyMOL molecular graphics system, version 1.5.0.4. Schr?dinger, LLC
    58. Shen KC, Kuczynska DA, Wu IJ, Murray BH, Sheckler LR, Rudenko G (2008) Regulation of neurexin 1β tertiary structure and ligand binding through alternative splicing. Structure 16:422-31 CrossRef
    59. Shipman SL, Nicoll RA (2012) A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 76:309-16 CrossRef
    60. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 30:7495-506 CrossRef
    61. Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical-and ‘non-classical-functions and pharmacology. Curr Opin Pharmacol 5:293-02 CrossRef
    62. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745-56 CrossRef
    63. S?ding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248 CrossRef
    64. Song JY, Ichtchenko K, Südhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 96:1100-105 CrossRef
    65. Sperling LE, Klaczinski J, Schütz C, Rudolph L, Layer PG (2012) Mouse acetylcholinesterase enhances neurite outgrowth of rat R28 cells through interaction with laminin-1. PLoS ONE 7:e36683 CrossRef
    66. Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903-11 CrossRef
    67. Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof TC (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435-45 CrossRef
    68. Sun Z, Reid KB, Perkins SJ (2004) The dimeric and trimeric solution structures of the multidomain complement protein properdin by X-ray scattering, analytical ultracentrifugation and constrained modelling. J Mol Biol 343:1327-343 CrossRef
    69. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872-89 CrossRef
    70. Tan K, Duquette M, Liu JH, Zhang R, Joachimiak A, Wang JH, Lawler J (2006) The structures of the thrombospondin-1N-terminal domain and its complex with a synthetic pentameric heparin. Structure 14:33-2 CrossRef
    71. Tanaka H, Miyazaki N, Matoba K, Nogi T, Iwasaki K, Takagi J (2012) Higher-order architecture of cell adhesion mediated by polymorphic synaptic adhesion molecules neurexin and neuroligin. Cell Rep 2:101-10 CrossRef
    72. Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281-20 CrossRef
    73. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068-079 CrossRef
    74. Ushkaryov YA, Petrenko AG, Geppert M, Südhof TC (1992) Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science 257:50-6 CrossRef
    75. Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449-56 CrossRef
    76. von Castelmur E, Marino M, Svergun DI, Kreplak L, Ucurum-Fotiadis Z, Konarev PV, Urzhumtsev A, Labeit D, Labeit S, Mayans O (2008) A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proc Natl Acad Sci U S A 105:1186-191 CrossRef
    77. Xu J, Xiao N, Xia J (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 13:22-4 CrossRef
  • 作者单位:Yves Bourne (1)
    Pascale Marchot (1)

    1. Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS/Aix-Marseille Université, Campus Luminy - Case 932, 13288, Marseille cedex 09, France
  • ISSN:1559-1166
文摘
The neuroligins are cell adhesion proteins whose extracellular domain belongs to the α/β-hydrolase fold family of proteins, mainly containing enzymes and exemplified by acetylcholinesterase. The ectodomain of postsynaptic neuroligins interacts through a calcium ion with the ectodomain of presynaptic neurexins to form flexible trans-synaptic associations characterized by selectivity for neuroligin or neurexin subtypes. This heterophilic interaction, essential for synaptic differentiation, maturation, and maintenance, is regulated by gene selection, alternative mRNA splicing, and posttranslational modifications. Mutations leading to deficiencies in the expression, folding, maturation, and binding properties of either partner are associated with autism spectrum disorders. The currently available structural and functional data illustrate how these two families of cell adhesion molecules bridge the synaptic cleft to participate in synapse plasticity and support its dynamic nature. Neuroligin partners distinct from the neurexins, and which may undergo either trans or cis interaction, have also been described, and tridimensional structures of some of them are available. Our study emphasizes the partnership versatility of the neuroligin ectodomain associated with molecular flexibility and alternative binding sites, proposes homology models of the structurally non-characterized neuroligin partners, and exemplifies the large structural variability at the surface of the α/β-hydrolase fold subunit. This study also provides new insights into possible surface binding sites associated with non-catalytic properties of the acetylcholinesterase subunit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700